Recent Progress in Pre-training for NLP

Furu Wei

Senior Principal Research Manager (首席研究员), MSRA\NLP Presented at CCMT 2020

Joint work with my colleagues and interns at MSRA

Attention Is All You Need

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Ashish Vaswani* **Google Brain** avaswani@google.com

Noam Shazeer* Niki Parmar* **Google Brain Google Research** noam@google.com nikip@google.com

Jakob Uszkoreit* **Google Research** usz@google.com

Llion Jones* Google Research llion@google.com

Aidan N. Gomez* [†] University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* [‡] illia.polosukhin@gmail.com Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova Google AI Language

{jacobdevlin,mingweichang,kentonl,kristout}@google.com

Transformer (NeurIPS 2017) NMT

The Era of NLP & Pre-training

SopenAI GPT-3

May 2020

175 billion parameters

The next stage of an artificial intelligence that was dubbed '**too dangerous to release**'

Google AI BERT Oct. 2018

11 language tasks

Fundamentally changes how we build SOTA NLP (and NL related) models

New NLP Paradigm: Pre-training + Fine-tuning

Downstream NLP Tasks: text classification, entity recognition, question answering, summarization, ...

Pre-trained Model

Transfer Learning for NLP Tasks

Language skills

Classify text into topics or sentiments

Extract entities from text

...

Find answers to questions from text

Summarize long text (e.g. a document)

Understand the **meaning** of text (e.g. words and their relations) in **context**

Reading (Cloze test)

NLP tasks

Text classification

Entity recognition

Question answering

Text summarization

...

Contextualized representations (vectors)

Self-supervised learning (Masked LM)

Massive-scale self-supervised learning via cloze tests

Self-supervised (Unsupervised) Learning

An apple is a sweet, edible fruit produced by an apple tree.

Key trends

- Big model, large corpora
- Unified model for NLU, NLG and multilingual tasks (incl. MT)
- Novel frameworks, pre-training tasks and network structures

The Anatomy of Language Model Pre-training

The Anatomy of Language Model Pre-training

NLP Tasks & Neural NLP Architectures

Text (Language E) => Text (Language F)

Pre-training Tasks: Language Modeling

Causal Language Modeling (CLM)

Predict the next word/token: predict w_i at the index of *i*-1 (using the hidden state of w_{i-1})

ELMo/GPT(-2/3)

Masked Language Modeling (MLM)

Predict the current word/token: predict w_i at the index of i (using the hidden state of *the placeholder (or masked token) of* w_i)

BERT/RoBERTa/XLNet/UniLM ...

Unidirectional LM

Bidirectional LM

The scope of the prediction over context tokens and among context tokens

Pre-training Tasks: Masked Language Modeling

Dependency among masked tokens during prediction

Pre-training Tasks: Masked Language Modeling

Denoising Autoencoder (DAE)

Sequence-to-Sequence LM

NLP Tasks & Pre-training Tasks

MLM: Masked Language Modeling CLM: Causal Language Modeling DAE: Denoising Autoencoder

Backbone Networks: Multilayer Transformers

The Anatomy of Language Model Pre-training

Architectures

- enc/unified, dec, enc-dec

Backbone Networks

- Transformer

Pre-training tasks

- MLM

UniLM: Unified Language Model Pre-training

Search or jump to	/ Pull requests Issues	Marketplace Explore		· 😓 + خ 🤃
📮 <u>microsoft</u> / unilm	https://github.com/microsoft/	<mark>/unilm</mark>	Ourwatch	★ Unstar 1.5k
<> Code (!) Issues 61	Pull requests 7 Image: Actions	凹 Projects 🛛 🏛 Wiki 🕕 Security	🗠 Insights 🛛 🐯 Settings	
<mark> </mark>	♡ 4 tags	Go to file Add file -	⊻ Code - Abo	ut ố
gitnlp Update README.m	nd	d5e2d83 3 days ago	UniL 188 commits train Beve	M - Unified Language Model Pre- ing / Pre-training for NLP and
.github/ISSUE_TEMPLATE	Update issue templates		5 months ago	
infoxlm	Update README.md		3 months ago	language-understanding
ayoutlm	Update README.md		19 days ago doc	ument-understanding
inilm	Update README.md		14 days ago	-trained-model
s2s-ft	Update README.md		4 months ago	III-pre-trained-model unilm

- UniLMv2: Pseudo-Masked Language Models for Unified Language Model Pre-Training. ICML 2020.
- Unified Language Model Pre-training for Natural Language Understanding and Generation. NeurIPS 2019. // UniLMv1
- MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers. **NeurIPS** 2020.
- InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training. Preprint 2020.
- LayoutLM: Pre-training of Text and Layout for Document Image Understanding. **KDD** 2020.

UniLM: Unified Language Model Pre-training

* Unified Language Model Pre-training for Natural Language Understanding and Generation. **NeurIPS** 2019.

* UniLMv2: Pseudo-Masked Language Models for Unified Language Model Pre-Training. ICML 2020.

Text (Language E) => Text (Language F)

Backbone Networks: Multilayer Transformer

Self-attention Masks

0: allow to attend $-\infty$: prevent from attending

Bidirectional Encoder NLU / Bidirectional LM

Unidirectional Decoder NLG (LM) / Unidirectional LM

Bidirectional Encoder + Unidirectional Decoder NLG (S2S/XL) / Sequence-to-Sequence LM

NLP Tasks / Pre-training Tasks

BIDIRECTIONAL ENCODER

<u>NLU</u>: text classification, entity recognition, question answering, ...

UNIDIRECTIONAL DECODER

NLG: text generation, ...

• • •

BIDIRECTIONAL ENCODER AND UNIDIRECTIONAL DECODER

<u>NLG (sequence-to-sequence)</u>: text summarization, question generation,

Overview of the Unified Pre-training Framework in UniLM. We use different self-attention masks to control the access to context for each word token in different variants of LMs in pre-training and different NLU/NLG tasks in fine-tuning.

Transformer Block & Self-Attention

Self-Attention Masks

$$\mathbf{Q} = \mathbf{H}_{L-1} \mathbf{W}_{L}^{Q}$$
 $\mathbf{K} = \mathbf{H}_{L-1} \mathbf{W}_{L}^{K}$ $\mathbf{V} = \mathbf{H}_{L-1} \mathbf{V}_{L}$
Attention $(Q, K, V) = \operatorname{softmax}(\frac{QK^{T}}{\sqrt{d_{k}}})V$

Self-Attention Masks for UniLM

NLU (Natural Language Understanding) NLG (Unconditional Language Generation)

NLG (Sequence-to-Sequence Generation)

Motivation of UniLMv2

(v1) One training example for each type of LM

- Three types of LMs
- Three forward passes with different self-attention masks

How to train multiple LMs in one forward pass?

Bidirectional LM Task

- 1. Bidirectionally encode context tokens
- 2. Predict the masked spans at the same time

Sequence-to-Sequence LM Task

- 1. Bidirectionally encode context tokens
- 2. Predict the masked spans one by one
 - 1. Predict x_4, x_5
 - 2. Encode x_4 , x_5 (i.e., fill in what we have predicted)
 - 3. Predict x_2

Observation #1: context encoding can be reused

 Bidirectional LM Task Bidirectionally encode context tokens Predict the masked spans at the same time 		<i>x</i> ₁	x ₂ ↑ [M]	<i>x</i> ₃	x₄ ↑ [M]	x₅ ↑ [M]	<i>x</i> ₆	
 Sequence-to-Sequence LM Task Bidirectionally encode context tokens Predict the masked spans one by one Predict x₄, x₅ Encode x₄, x₅ (i.e., fill in what we have predicted) Predict x₂ 	t=1 t=2	<i>x</i> ₁ <i>x</i> ₁	[M] <i>x</i> ₂ ↑ [P]	<i>x</i> ₃ <i>x</i> ₃	x ₄ [P] x ₄	x ₅ [P] x ₅	x ₆ x ₆	

Observation #1: context encoding can be reused Observation #2: masked positions have three roles

Bidirectional LM Task

- 1. Bidirectionally encode context tokens
- 2. Predict the masked spans at the same time

Sequence-to-Sequence LM Task

- 1. Bidirectionally encode context tokens
- 2. Predict the masked spans one by one
 - 1. Predict x_4, x_5
 - 2. Encode x_4, x_5 (i.e., fill in what we have predicted)
 - 3. Predict x_2

• A general framework to

- efficiently realizes different pre-training objectives
 - AE (autoencoding): BERT/RoBERTa
 - AR (autoregressive): XLNet
 - PAR (partially autoregressive): New in UniLMv2
 - AE + AR: BERT + XLNet
 - AE + PAR: UniLMv2 (unified pre-training), performs the best
- effectively learn different word dependencies
 - Between context and mask predictions
 - Between mask predictions

in one forward pass

UniLM (v2): Unified pre-training of bi-directional LM (via autoencoding) and sequenceto-sequence LM (via partially autoregressive) with Pseudo-Masked Language Model for language understanding and generation

- Transformer/Self-attention treats tokens with the same position embeddings as the *same "token"* at that position
- Pseudo-masked LM can be used to efficiently realize different pre-training objectives, such as AE (autoencoding), AR (autoregressive), PAR (partially autoregressive), AE + AR, and AE + PAR, among which AE + PAR performs the best

Self-Attention Masks for UniLMv2

Unified pre-training of bi-directional LM (via autoencoding) and sequence-to-sequence LM (via partially autoregressive) with one training sample (forward pass)

UniLMv2 Base for NLU Tasks

Model	SQuAD v1.1 SQuAD v2.0		AD v2.0	Model	MNLI	SST-2	MRPC	RTE	QNLI	QQP	STS	CoLA	
widdei	F1	EM	F1	EM	Iviouei	Acc	Acc	Acc	Acc	Acc	Acc	PCC	MCC
BERT	88.5	80.8	76.3	73.7	BERT	84.5	93.2	87.3	68.6	91.7	91.3	89.5	58.9
XLNet	-	-	-	80.2	XLNet	86.8	94.7	88.2	74.0	91.7	91.4	89.5	60.2
RoBERTa	91.5	84.6	83.7	80.5	RoBERTa	87.6	94.8	90.2	78.7	92.8	91.9	91.2	63.6
UNILMv2	93.1	87.1	86.1	83.3	UNILMv2	88.5	95.1	91.8	81.3	93.5	91.7	91.0	65.2

Results of **BASE-size** pre-trained models on the **SQuAD v1.1/v2.0** development sets. We report F1 scores and exact match (EM) scores. Results of UniLMv2 are averaged over five runs.

Results of **BASE-size** models on the development set of the **GLUE benchmark**. We report Matthews correlation coefficient (MCC) for CoLA, Pearson correlation coefficient (PCC) for STS, and accuracy (Acc) for the rest. Metrics of UniLMv2 are averaged over five runs for the tasks.

UniLMv2 Base/Large for NLG Tasks

Outperforming T5(11B), BART, Pegasus, w/ 3% of T5 parameters, 20% of T5 (4% of Pegasus) data

Model	#Param	Corpus	CNN/DailyMail RG-1/RG-2/RG-L	XSum RG-1/RG-2/RG-L	Gigaword RG-1/RG-2/RG-L
Without pre-training PTRNET (See et al., 2017)	-	-	39.53/17.28/36.38	28.10/8.02/21.72	-
Fine-tuning BASE-size pre-trained models MASS _{BASE} (Song et al., 2019) BERTSUMABS (Liu & Lapata, 2019) ERNIE-GEN _{BASE} (Xiao et al., 2020) T5 _{BASE} (Raffel et al., 2019) UNILMV2	123M 156M 110M 220M 110M	- 16GB 16GB 750GB 160GB	42.12/19.50/39.01 41.72/19.39/38.76 42.30/19.92/39.68 42.05/20.34/39.40 43.89/21.05/41.02	39.75/17.24/31.95 38.76/16.33/31.15 - - 44.67/21.78/36.81	38.73/19.71/35.96 - 38.83/20.04/36.20 - -
Fine-tuning LARGE-size pre-trained model UNILMV1 _{LARGE} (Dong et al., 2019) ERNIE-GEN _{LARGE} (Xiao et al., 2020) BART _{LARGE} (Lewis et al., 2019) ProphetNet (Yan et al., 2020) PEGASUS _{C4} (Zhang et al., 2019) PEGASUS _{HUGENEWS} (Zhang et al., 2019) T5 _{11B} (Raffel et al., 2019) UNILMV2	340M 340M 400M 400M 568M 568M 11B 340M	16GB 16GB 160GB 160GB 750GB 3800GB 750GB 160GB	43.08/20.43/40.34 44.02/21.17/41.26 44.16/21.28/40.90 44.20/21.17/41.30 43.90/21.20/40.76 44.17/21.47/41.11 43.52/21.55/40.69 44.79/21.98/41.93	45.14/22.27/37.25 45.20/22.06/36.99 47.21/ 24.56 /39.25 4 7.58 /24.35/ 39.50	38.90/20.05/36.00 39.25/20.25/36.53 39.51/20.42/36.69 38.75/19.96/36.14 39.12/19.86/36.24 39.73/20.70/36.89

Abstractive summarization results on CNN/DailyMail and XSum. The evaluation metric is the F1 version of ROUGE (RG) scores. We also include the number of parameters (#Param) for the methods using pre-trained models.

UniLMv2 Base/Large for NLG Tasks

Model	#Param	Corpus	Official Split BLEU-4 / MTR / RG-L	Reversed Split BLEU-4 / MTR / RG-L
Without pre-training				
(Du & Cardie, 2018)	-	-	15.16/19.12/ -	-
(Zhao et al., 2018)	-	-	-	16.38 / 20.25 / 44.48
(Zhang & Bansal, 2019)	-	-	18.37 / 22.65 / 46.68	20.76 / 24.20 / 48.91
Fine-tuning BASE-size pre-trained mod	lels			
ERNIE-GENBASE (Xiao et al., 2020)	110M	16GB	22.28 / 25.13 / 50.58	23.52 / 25.61 / 51.45
UNILMV2	110M	160GB	24.70 / 26.33 / 52.13	26.30 / 27.09 / 53.19
Fine-tuning LARGE-size pre-trained me	odels			
UNILMV 1_{LARGE} (Dong et al., 2019)	340M	16GB	22.12 / 25.06 / 51.07	23.75 / 25.61 / 52.04
ERNIE-GEN _{LARGE} (Xiao et al., 2020)	340M	16GB	24.03 / 26.31 / 52.36	25.57 / 26.89 / 53.31
ProphetNet (Yan et al., 2020)	400M	16GB	25.01 / 26.83 / 52.57	26.72 / 27.64 / 53.79
UNILMV2	340M	160GB	25.97 / 27.33 / 53.43	27.12 / 27.95 / 54.25

Question generation results on SQuAD v1.1. MTR is short for METEOR, and RG for ROUGE. The official split is from (Du & Cardie, 2018), while the reversed split is the same as in (Zhao et al., 2018).

UniLM: Unified Language Model Pre-training

* InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training. Preprint 2020.

InfoXLM – Cross-lingual Language Model Pre-training

Unified Information Theoretic Framework

Maximize the InfoNCE (Oord, 2018) lower bound of mutual information $I(x_{en}; x_{fr})$

Mixup Contrast

- Because parallel sentences are always in different languages, the model easily knows y_{en} is a negative example of x_{en}
 - Problem: sentences in the same language are "dissimilar" even if they have similar meanings

 x_{en} (x., x.) is the correct translation pair

- Solution: mixup contrast
 - Randomly mixup translation pairs and shuffle their orders
 - Encourage multilingual representations blend in together

Contrast on Universal Layer

- Multilingual masked language modeling encourages bottleneck structure
 - Language-specific (bottom layers) -> language-agnostic (middle layers) -> language-specific (upper layers)
- Contrastive learning is put on the middle layer to avoid violating the universal space

InfoXLM/T-ULRv2 Achieves #1 on XTREME Benchmark

- Cover four paradigms: classification, structured prediction, question answering, retrieval
- Average over 9 datasets, and 40 languages

Rank	Model	Participant	Affiliation	Attempt Date	Avg	Sentence-pair Classification	Structured Prediction	Question Answering	Sentence Retrieval
0		Human	-	-	93.3	95.1	97.0	87.8	-
1	T-ULRv2 + StableTune	Turing	Microsoft	Oct 7, 2020	80.7	88.8	75.4	72.9	89.3
2	VECO	DAMO NLP Team	Alibaba	Sep 29, 2020	77.2	87.0	70.4	68.0	88.1
3	FILTER	Dynamics 365 Al Research	Microsoft	Sep 8, 2020	77.0	87.5	71.9	68.5	84.4
4	X-STILTs	Phang et al.	New York University	Jun 17, 2020	73.5	83.9	69.4	67.2	76.5
5	XLM-R (large)	XTREME Team	Alphabet, CMU	-	68.2	82.8	69.0	62.3	61.6
6	mBERT	XTREME Team	Alphabet, CMU	-	59.6	73.7	66.3	53.8	47.7
7	MMTE	XTREME Team	Alphabet, CMU	-	59.3	74.3	65.3	52.3	48.9
8	RemBERT	Anonymous2	Anonymous2	-	56.1	84.1	73.3	68.6	-
9	XLM	XTREME Team	Alphabet, CMU	-	55.8	75.0	65.6	43.9	44.7

XTREME Benchmark (CMU & Google): <u>https://sites.research.google/xtreme/</u>

Pre-training for NLP: Revisit

BUILDING SOTA PRE-TRAINED MODELS

Modeling

Network structures, pre-training tasks & objectives

Data

Massive-scale (unlimited) unlabeled corpora

System & Infra

Large-scale training & optimization

#1 - Pre-training tasks: Masked Language Modeling

DAE (enc-dec), TLM (cross-lingual), ...

Masked LM and the Masking Procedure Assuming the unlabeled sentence is my dog is hairy, and during the random masking procedure we chose the 4-th token (which corresponding to hairy), our masking procedure can be further illustrated by 15% of tokens

- 80% of the time: Replace the word with the [MASK] token, e.g., my dog is hairy \rightarrow my dog is [MASK]
- 10% of the time: Replace the word with a random word, e.g., my dog is hairy \rightarrow my dog is apple
- 10% of the time: Keep the word unchanged, e.g., my dog is hairy → my dog is hairy. The purpose of this is to bias the representation towards the actual observed word.

* Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. 2019. *BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding*. NAACL 2019.

BERT: Pre-training of Deep Bidirectional Transformers for ...

Oct 11, 2018 – Unlike recent language representation models, **BERT** is designed to **pre-train**

deep bidirectional representations from unlabeled text by jointly ...

by J Devlin · 2018 · Cited by 10265 · Related articles

Cloze Test (<u>https://en.wikipedia.org/wiki/Cloze test</u>)

A **cloze test** (also **cloze deletion test**) is an exercise, test, or assessment consisting of a portion of language with certain items, words, or signs removed (cloze text), where the participant is asked to replace the missing language item. Cloze tests require the ability to understand context and vocabulary in order to identify the correct language or part of speech that belongs in the deleted passages. This exercise is commonly administered for the assessment of native and second language learning and instruction.

The word *cloze* is derived from *closure* in Gestalt theory. The exercise was first described by W.L. Taylor in 1953.^[1]

A language teacher may give the following passage to students:

Today, I went to the ______, and bought some milk and eggs. I knew it was going to rain, but I forgot to take my _____, and ended up getting wet on the way.

Students would then be required to fill in the blanks with words that would best complete the passage. Context in language and content terms is essential in most, if not all, cloze tests. The first blank is preceded by "the"; therefore, a noun, an adjective or an adverb must follow. However, a conjunction follows the blank; the sentence would not be grammatically correct if anything other than a noun were in the blank. The words "milk and eggs" are important for deciding which noun to put in the blank; "supermarket" is a possible answer; depending on the student, however, the first blank could be store, supermarket, shop, shops, market, or grocer while umbrella, brolly or raincoat could fit the second.

* Wilson L Taylor. 1953. Cloze Procedure: A New Tool for Measuring Readability. Journalism Bulletin, 30(4):415–433.

"Cloze Procedure": A New Tool for Measuring Readability ...

"CLOZE PROCEDURE" IS A NEW psychological tool for measuring the effectiveness of communication. The method is straightforward; the data are easily ... by WL Taylor - 1953 - Cited by 2549 - Related articles

Cloze Test

Taylor (1953) first suggested the cloze procedure for determining the difficulty, or **"readability,"** of a text — reasoning that if several people could **reproduce the missing words of a "mutilated" passage** than the text must be easy to read, but if they could not supply the missing words the text must be difficult.

It was not long before Taylor himself saw the potential to use cloze as a measure of reading comprehension. In a 1956 paper, he reasoned that **"if the statement that a passage is 'readable' means that it is 'understandable,'** then the scores that measure readability should measure comprehension too".

Further research has demonstrated that cloze tests tend to correlate well with almost every kind of language test. Traditional cloze tests were found to correlate not only with reading comprehension tests but also with dictation, listening comprehension, structure/grammar, and vocabulary tests.

Results such as these are what led Oller and Conrad (1971) and others to mark **cloze procedures as integrative tests and as good measures of** *general language proficiency* rather than the more specific reading comprehension alone.

* TREELA MCKAMEY. 2014. Getting Closure On Cloze: A Validation Study of the "Rational Deletion" Method.

Gestalt Laws of Grouping: Closure

Gestalt psychologists emphasized that organisms perceive entire patterns or configurations, not merely individual components. The view is sometimes summarized using the adage, "**the whole is more than the sum of its parts**."

Gestalt psychologists believed that humans tend to perceive objects as complete rather than focusing on the gaps that the object might contain. For example, a circle has good Gestalt in terms of completeness. However, we will also perceive an incomplete circle as a complete circle. That tendency to complete shapes and figures is called closure. The law of closure states that individuals perceive objects such as shapes, letters, pictures, etc., as being whole when they are not complete. Specifically, when parts of a whole picture are missing, our perception fills in the visual gap.

* <u>https://en.wikipedia.org/wiki/Gestalt_psychology</u>

#2 - Backbone Networks: Multilayer Transformers

Linear MatMul LM Layer Task Layers Concat SoftMax Scaled Dot-Product Add & Norm Mask (opt.) h Attention Feed Forward Scale Linear Linear Linear Add & Norm MatMul Multi-Head Attention V V K Κ Q Q Positional Encoding **Multi-Head Attention** Scaled Dot-Product Attention Input Embedding Attention $(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_*}})V$ $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$ where head_i = Attention (QW_i^Q, KW_i^K, VW_i^V)

Relative position, self-attention, ...

Inputs

N×

Future Development of (LM) Pre-training

• Pre-training tasks

Parameterized self-supervised tasks

Network structures

- Improved (e.g. better/fast) Transformer & beyond
- Learning efficiency
 - Data/sample selection and planning (curriculum learning)
- Big & small pre-trained models
 - Large-scale training & optimization
 - The "ceiling" of small models

NMT & Pre-training

Pre-training for MT

Can we beat the BT baseline? Low-resource?

MT for Pre-training

Can we have better pre-training tasks besides TLM/XLCo? Can BT be used for multilingual LM pre-training?

Thanks