### **Tencent Submissions for the CCMT** 2020 Quality Estimation Task

王子璇,伍海江,马青松,文心杰,王瑞琛,王晓利,张昱霖,姚志鹏

Zixuan Wang, Haijiang Wu, Qingsong Ma, Xinjie Wen, Ruichen Wang, Xiaoli Wang, Yulin Zhang, Zhipeng Yao

PCG & CSIG, Tencent Inc, China



# **Overview**

- QE Task
- Predictor-Estimator Architecture
  - Predictor
    - XLM-Predictor
    - Transformer-Predictor
  - Estimator
    - Top-K Strategy
    - Multi-head Attention Strategy
- Stacking Ensemble
- Experiments

# **Quality Estimation (QE) Task**

- What is QE?
  - QE is to evaluate the quality of MT outputs automatically with no access to reference translations.



# **Quality Estimation (QE) Task**

• Why QE?

#### **Human evaluation**

- Professional annotators
- Quality control
- Time consuming

#### **Metrics**

• Human references



## **Predictor-Estimator Architecture**

- **Predictor** extracts feature vectors from the source sentence and the MT output.
- Estimator takes feature vectors produced from Predictor to predict the quality score of the MT output.



Kim, Hyun, et al. "Predictor-estimator: Neural quality estimation based on target word prediction for machine translation." ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) 17.1 (2017): 1-22.

# Predictor

### • XLM-predictor

- Cross-lingual language model (XLM) aims to extract contextualized token representations of the MT output.
- Two types of representations
  - Non-mask-XLM: all words are fed into the XLM to predict each word's representation, enabling the word itself to help predict its representation.
  - Mask-XLM: one target word is masked one time so that the prediction of the masked target word leverages only the surrounding target words and the source context, without any prior information from itself.

## Predictor

### • XLM-predictor

- Further computation to enhance the token representation
  - Weight of each dimension in the token representation
  - Language embedding of the token

$$Rep_i = R_i \cdot (W_i + Emb_{lang})$$

## Predictor

#### Transformer-predictor

- Improving one top-performing model by conducting three modifications:
  - Using multi-decoding in machine translation module
  - Creating a new model by replacing the transformer-based predictor with XLMbased predictor
  - Integrating two models by a weighted average

$$Score = \alpha * Score_{Transformer} +$$
$$(1 - \alpha) * Score_{XLM} \quad \alpha = 0.8$$

Fan, Kai, et al. ""Bilingual Expert" Can Find Translation Errors." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 2019.

### **Estimator**

- LSTM-estimator and Transformer-estimator
- Two strategies to optimize the sentence features
  - Top-K strategy Multi-head attention strategy Top-k Attention  $-\alpha_k(h_i)$

# **Stacking Ensemble**

- 5-fold cross validation
- Regressors
  - Powell's method
  - Quantile Regression
  - SVR
  - LR



...

# **Whole Architecture**



- Data
  - Parallel data for Predictor
  - Triple data for Estimator

|               | CCMT20 provided                | Extra resources |
|---------------|--------------------------------|-----------------|
| Parallel data | 8M                             | 37M form WMT20  |
| Triple data   | 10K for zh-en<br>15K for en-zh | -               |

#### • Experiments with the XLM-Predictor

| Model              | <b>ZH-EN</b> | EN-ZH |
|--------------------|--------------|-------|
| Both_LSTM_attn     | .5468        | .5244 |
| Both_LSTM_topK     | .5620        | .5205 |
| Both_TF_attn       | .5364        | .4865 |
| Both_TF_topK       | .5350        | .5056 |
| mask_LSTM_attn     | .5542        | .4982 |
| mask_LSTM_topK     | .5690        | .4956 |
| mask_TF_attn       | .5540        | .4951 |
| mask_TF_topK       | .5603        | .4978 |
| non-mask_LSTM_attn | .5365        | .5329 |
| non-mask_LSTM_topK | .5507        | .5277 |
| non-mask_TF_attn   | .5345        | .5179 |
| non-mask_TF_topK   | .5382        | .5208 |

**Table 1.** Pearson correlations of single QE systems with XLM-Predictor on CCMT2020 QE EN-ZH and ZH-EN development set for sentence-level task.

• Experiments with the Transformer-Predictor

|                | Model | Model2 | Model3 | Model4 | Model5 |
|----------------|-------|--------|--------|--------|--------|
| XLM-EST-dim    | 5140  | 5140   | 5140   | 0      | 0      |
| Trans-EST-dim  | 5140  | 5140   | 5140   | 5140   | 5140   |
| XLM_finetune   | 1     | 1      | 0      | 1      | 1      |
| XLM-tgt-only   | 0     | 1      | 1      | 1      | 1      |
| EST-hidden-dim | 512   | 256    | 256    | 256    | 512    |
| Pearson-ZH-EN  | .549  | .547   | .549   | .512   | .51    |
| Pearson-EN-ZH  | .491  | .495   | .491   | .456   | .453   |

**Table 2.** Pearson correlations of single QE systems with Transformer-Predictor on CCMT 2020 QE EN-ZH and ZH-EN development set for sentence-level task.

- Experiments with ensemble methods
  - 13 single systems for EN-ZH, 12 single systems for ZH-EN

| Ensemble methods    | <b>ZH-EN</b> | EN-ZH |
|---------------------|--------------|-------|
| Average             | .5648        | .5408 |
| Powell's            | .5839        | .5592 |
| Quantile Regression | .5848        | .5530 |
| SVR                 | .5643        | .5449 |
| LR                  | .5843        | .5588 |

**Table 3.** Pearson correlations of ensemble QE systems on CCMT 2020 QE EN-ZH and ZH-EN development set for sentence-level task.



### Thanks

# Tencent腾讯