
Description and Findings of OPPO's Machine Translation Systems for CCMT 2020

2020/10/11

Tingxun Shi OPPO Research Institute shitingxun@oppo.com


Contents

- Data processing
- Applying Multiple Segmentation Tools
- Model Training
- Main techniques
- Experiments results
- Conclusions

Data Processing - Text Conversion in General

- Simplify Chinese characters
- Normalize punctuations
 - Symbol unification. E.g. Convert different hyphens to the ASCII one (-, ASCII Code 45)
 - for full stops, commas, question marks and exclamation marks)
- Convert all punctuations in Chinese corpus to half width form (except) Segment Chinese corpus (pkuseg)
- Tokenize (moses)
- True case

Data Processing - Special Conversions

- Multilingual translation
 - Convert all CJK characters in Japanese corpus to Kanji
 - Segment corpus using mecab
- Minority languages translation
 - design ad hoc rules
 - Unify non-alphabet symbols (e.g. Tibetan numbers)
 - Delete invalid/invisible symbols
 - Special process for Tibetan (see our report for more details)
 - Jointly use different segmentation tools for Chinese

More careful data processing: we listed all non-Chinese characters and

Data Processing - Text Filtering

Heuristic filtering: Remove sentence pairs that

- Contain too many non-sense characters (e.g. Emoji)
- Contain too long sentences (count of words > 160)
- Icount number(src) count number(tgt)| >= 3
- Icount punc(src) count punc(tgt)| >= 5
- Len(en) / len(zh) < 0.7 or > 2.2
- Deduplication
- Alignment-based filtering
 - Get alignment scores using fast align
 - Remove pairs that sentence-level score < -16 or word-level score < -2.5
- Setting the threshold
 - Fixed threshold by experiences
 - Based on statistical information (0.1 or 99.9 percentile)

Results of Text Filtering

Task	# Pairs before Cleaning	# Pairs after Cleaning	Retention Rate
EnZh/ZhEn	28M	17M	60.71%
JaEn	JaZh: 3M EnZh: 3M	JaZh: 2.9M EnZh: 2.8M	JaZh: 96.67% EnZh: 93.33%
UgZh	169,525	163,762	96.60%
BoZh	162,096	147,440	90.96%
MnZh	261,454	228,225	96.18%

OPPO's Machine Translation Systems for CCMT 2020

oppo

- Inspiration: multilingual translation
- Segement Chinese corpus using different segmentation tools (e.g. jointly use pkuseg and jieba. For Uighur we also use scws), and combine the results with character-based texts
 - Add symbol "<tag>" to mark how the sentence is segmented, for BOTH source and target corpus
 - Remove BPE suffices "@@" for Chinese corpus
 - Chinese has no explicit words boundaries, post-processing is not a problem
 - Component of a subword may have the exactly same meaning as the individual word, e.g. "国际" and "国际@@" in "国际@@ 贸易" (if "国际贸易" is separated by BPE)
 - Shatter low frequency words to characters

Method

Baseline model (Character-based)

+ pkuseg segmentation

+ Multiple segmentation w/o segmentation tag

+ Segmentation tag & keeping BPE symbol

+ Removing BPE symbol

+ selected by kenlm

oppo

Validation set BLEU	Improvement	Online test BLEU
44.2	-/-	54.74
45.4	+1.2/+1.2	(not tested)
45.7	+1.5/+0.3	(not tested)
46.1	+1.9/+0.4	(not tested)
46.2	+2.0/+0.1	55.90
46.7	+2.5/+0.5	56.69

8

Method

Baseline model (Character-based)

+ pkuseg segmentation

+ Multiple segmentation w/o segmentation tag

+ Segmentation tag & keeping BPE symbol

+ Removing BPE symbol

+ selected by kenIm

oppo

Case by case, different across tasks

Validation set BLEU	Improvement	Online test BLEU
44.2	-/-	54.74
45.4	+1.2/+1.2	(not tested)
45.7	+1.5/+0.3	(not tested)
46.1	+1.9/+0.4	(not tested)
46.2	+2.0/+0.1	55.90
46.7	+2.5/+0.5	56.69

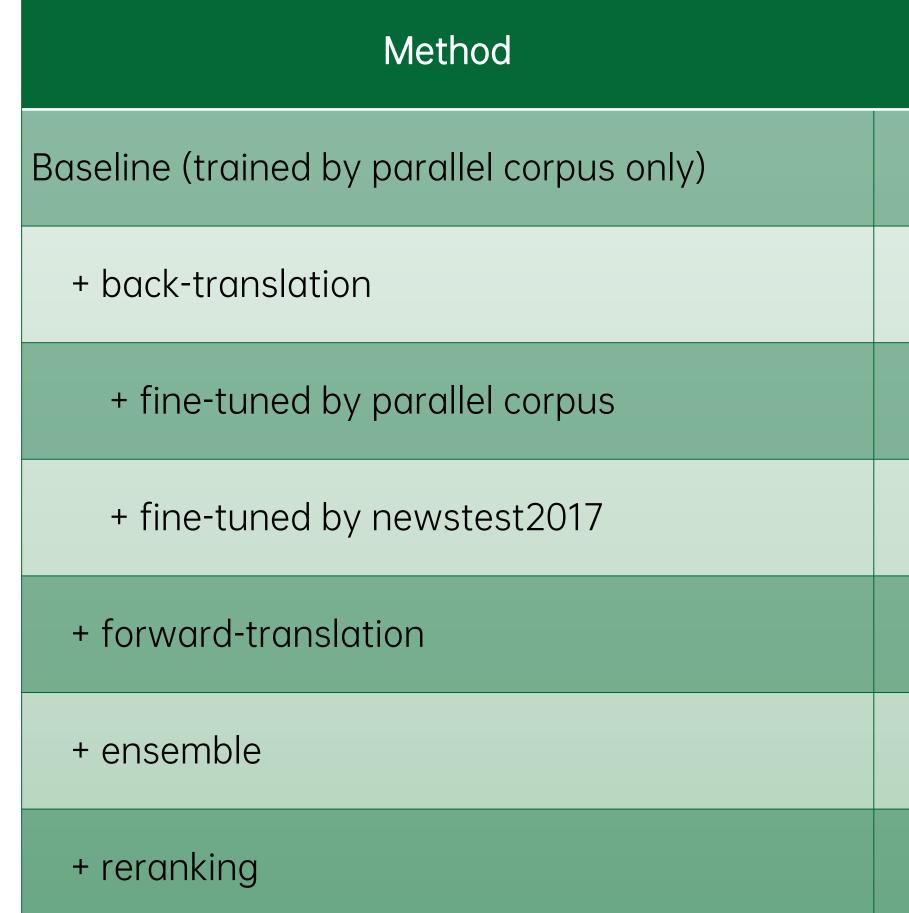
- Why?
 - Data augmentation?
 - model's robustness?
 - character mixture models?
- Has no impact on high-resource tasks

• A sentence can be segmented into different forms, thus improve the

Interaction between character-based models and multiple word-

Model Training

- Architecture: Transformer-Big
 - For EnZh, Dimension of the FFN is 15,000
- Framework: fairseq
- BPE
 - EnZh/ZhEn/EnJa: 32K joint BPE, separated vocabulary
 - UgZh/BoZh: 32K separate BPE
 - MnZh: 16K separate BPE


Main Techniques

- Back-translation
 - ZhEn/EnZh tasks: argmax-based back-translation performed better than noisy back-translation
 - Minority languages tasks: add tag <bt>
 - ZhEn/EnZh tasks: also benefitted from forward-translation
- Domain adaptation
 - "Translationese problem" —— fine-tune using original parallel corpus
 - Domain mismatch
 - fine-tune using validation set
 - fine-tune using corpus that similar to the test set (selected by FDA algorithm), try different corpus sizes (10K, 100K, 1M ...)
- Model Ensemble
- Reranking according to multiple features: K-Batched MIRA or Noisy Channel
- Multilingual training (for JaEn task only)

Final Results - EnZh Task

1st in the leaderboard

OPPO's Machine Translation Systems for CCMT 2020

oppo

Validation set BLEU	Absolute Improvement	Relative Improvement
38.6	-	_
39.1	+0.5	+0.5
40.6	+2.0	+1.5
41.3	+2.7	+0.7
41.9	+3.3	+2.8
42.7	+4.1	+0.8
43.2	+4.6	+0.5

Final Results - ZhEn Task

1st in the leaderboard

Method

Baseline (trained by parallel corpus only)

+ back-translation

+ forward-translation

+ fine-tuned by newstest2017

+ ensemble & reranking

Using the two models trained in these two tasks as scorers, we also ranked 1st in the Corpus Filtering task (500M English words subset)

Validation set BLEU	Absolute Improvement	Relative Improvement
28.8	-	_
29.8	+1.0	+1.0
34.5	+5.7	+4.7
36.7	+7.9	+2.2
38.3	+9.5	+1.6

Final Results - JaEn Task

1st in the leaderboard

Method

Baseline (trained by parallel corpus only)

+ forward-translation

+ multi-lingual processing

+ ensemble

+ reranking

oppo

Validation set BLEU	Absolute Improvement	Relative Improvement
37.8	-	_
39.5	+1.7	+1.7
40.5	+2.7	+1.0
41.1	+3.3	+0.6
41.5	+3.7	+0.4

Final Results - Minority Languages Task

Baseline (trained by parallel corpus only)

+ back-translation & ensemble kd

+ fine-tune on the original parallel corpus

+ model ensemble

+ reranking

Uighur	Tibetan	Mongolian
38.6	46.7	61.4
48.6 (+10.0)	47.9 (+1.2)	63.9 (+2.5)
49.0 (+0.4)	50.0 (+2.1)	66.9 (+3.0)
49.4 (+0.4)	53.0 (+3.0)	69.5 (+2.6)
49.5 (+0.1)	53.0 (+0.0)	73.0 (+3.5)
1st	1st	2nd

Conclusions

- translation tasks
- Fine-tune could contribute a lot if there is a domain mismatch
- Impact brought by back-translation also depends on domain
- reranking

Applying multiple segmentation tools helps on the low-resource

 Forward-translation could bring gains as well as back-translation Model performance generally benefits from model ensemble and

What one loses on the swings, he gets back on the roundabouts

Thank you

