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Data Processing – Text Conversion in General

• Simplify Chinese characters

• Normalize punctuations

• Symbol unification. E.g. Convert different hyphens to the ASCII one（-, 

ASCII Code 45）

• Convert all punctuations in Chinese corpus to half width form (except 

for full stops, commas, question marks and exclamation marks)

• Segment Chinese corpus (pkuseg)

• Tokenize (moses)

• True case

OPPO’s Machine Translation Systems for CCMT 2020
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Data Processing – Special Conversions

• Multilingual translation

• Convert all CJK characters in Japanese corpus to Kanji

• Segment corpus using mecab

• Minority languages translation

• More careful data processing: we listed all non-Chinese characters and 

design ad hoc rules

• Unify non-alphabet symbols (e.g. Tibetan numbers)

• Delete invalid/invisible symbols

• Special process for Tibetan (see our report for more details)

• Jointly use different segmentation tools for Chinese
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Data Processing – Text Filtering

• Heuristic filtering: Remove sentence pairs that

• Contain too many non-sense characters (e.g. Emoji)

• Contain too long sentences (count of words > 160)

• |count_number(src) – count_number(tgt)| >= 3

• |count_punc(src) – count_punc(tgt)| >= 5

• Len(en) / len(zh) < 0.7 or > 2.2

• Deduplication

• Alignment-based filtering

• Get alignment scores using fast_align

• Remove pairs that sentence-level score < -16 or word-level score < -2.5

• Setting the threshold

• Fixed threshold by experiences

• Based on statistical information (0.1 or 99.9 percentile)
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Results of Text Filtering

OPPO’s Machine Translation Systems for CCMT 2020

Task # Pairs before Cleaning # Pairs after Cleaning Retention Rate

EnZh/ZhEn 28M 17M 60.71%

JaEn
JaZh: 3M
EnZh: 3M

JaZh: 2.9M
EnZh: 2.8M

JaZh: 96.67%
EnZh: 93.33%

UgZh 169,525 163,762 96.60%

BoZh 162,096 147,440 90.96%

MnZh 261,454 228,225 96.18%



7

Applying Multiple Segmentation Tools

• Inspiration: multilingual translation 

• Segement Chinese corpus using different segmentation tools (e.g. jointly use 

pkuseg and jieba. For Uighur we also use scws), and combine the results with 

character-based texts

• Add symbol “<tag>” to mark how the sentence is segmented, for BOTH source and 

target corpus

• Remove BPE suffices “@@” for Chinese corpus

• Chinese has no explicit words boundaries, post-processing is not a problem

• Component of a subword may have the exactly same meaning as the individual word, 

e.g. “国际” and “国际@@” in “国际@@ 贸易” (if “国际贸易” is separated by BPE)

• Shatter low frequency words to characters
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Applying Multiple Segmentation Tools

OPPO’s Machine Translation Systems for CCMT 2020

Method Validation set BLEU Improvement Online test BLEU

Baseline model (Character-based) 44.2 -/- 54.74

+ pkuseg segmentation 45.4 +1.2/+1.2 (not tested)

+ Multiple segmentation w/o segmentation tag 45.7 +1.5/+0.3 (not tested)

+ Segmentation tag & keeping BPE symbol 46.1 +1.9/+0.4 (not tested)

+ Removing BPE symbol 46.2 +2.0/+0.1 55.90

+ selected by kenlm 46.7 +2.5/+0.5 56.69
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Applying Multiple Segmentation Tools

OPPO’s Machine Translation Systems for CCMT 2020

Method Validation set BLEU Improvement Online test BLEU

Baseline model (Character-based) 44.2 -/- 54.74

+ pkuseg segmentation 45.4 +1.2/+1.2 (not tested)

+ Multiple segmentation w/o segmentation tag 45.7 +1.5/+0.3 (not tested)

+ Segmentation tag & keeping BPE symbol 46.1 +1.9/+0.4 (not tested)

+ Removing BPE symbol 46.2 +2.0/+0.1 55.90

+ selected by kenlm 46.7 +2.5/+0.5 56.69

Case by case, different across tasks
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Applying Multiple Segmentation Tools

• Why?

• Data augmentation?

• A sentence can be segmented into different forms, thus improve the 

model’s robustness?

• Interaction between character-based models and multiple word-

character mixture models?

• Has no impact on high-resource tasks
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Model Training

• Architecture: Transformer-Big

• For EnZh, Dimension of the FFN is 15,000

• Framework: fairseq

• BPE

• EnZh/ZhEn/EnJa: 32K joint BPE, separated vocabulary

• UgZh/BoZh: 32K separate BPE

• MnZh: 16K separate BPE
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Main Techniques 

• Back-translation

• ZhEn/EnZh tasks: argmax-based back-translation performed better than noisy back-translation

• Minority languages tasks：add tag <bt>

• ZhEn/EnZh tasks: also benefitted from forward-translation

• Domain adaptation

• “Translationese problem” —— fine-tune using original parallel corpus

• Domain mismatch

• fine-tune using validation set

• fine-tune using corpus that similar to the test set (selected by FDA algorithm), try different corpus sizes (10K, 

100K, 1M ...)

• Model Ensemble

• Reranking according to multiple features: K-Batched MIRA or Noisy Channel

• Multilingual training (for JaEn task only)
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Final Results – EnZh Task

OPPO’s Machine Translation Systems for CCMT 2020

Method Validation set BLEU
Absolute 

Improvement
Relative 

Improvement

Baseline (trained by parallel corpus only) 38.6 - -

+ back-translation 39.1 +0.5 +0.5

+ fine-tuned by parallel corpus 40.6 +2.0 +1.5

+ fine-tuned by newstest2017 41.3 +2.7 +0.7

+ forward-translation 41.9 +3.3 +2.8

+ ensemble 42.7 +4.1 +0.8

+ reranking 43.2 +4.6 +0.5

1st in the leaderboard
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Final Results – ZhEn Task

OPPO’s Machine Translation Systems for CCMT 2020

Method Validation set BLEU
Absolute 

Improvement
Relative 

Improvement

Baseline (trained by parallel corpus only) 28.8 - -

+ back-translation 29.8 +1.0 +1.0

+ forward-translation 34.5 +5.7 +4.7

+ fine-tuned by newstest2017 36.7 +7.9 +2.2

+ ensemble & reranking 38.3 +9.5 +1.6

1st in the leaderboard

Using the two models trained in these two tasks as scorers, we also ranked 1st
in the Corpus Filtering task (500M English words subset)
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Final Results – JaEn Task

OPPO’s Machine Translation Systems for CCMT 2020

Method Validation set BLEU
Absolute 

Improvement
Relative 

Improvement

Baseline (trained by parallel corpus only) 37.8 - -

+ forward-translation 39.5 +1.7 +1.7

+ multi-lingual processing 40.5 +2.7 +1.0

+ ensemble 41.1 +3.3 +0.6

+ reranking 41.5 +3.7 +0.4

1st in the leaderboard
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Final Results – Minority Languages Task

OPPO’s Machine Translation Systems for CCMT 2020

Method Uighur Tibetan Mongolian

Baseline (trained by parallel corpus only) 38.6 46.7 61.4

+ back-translation & ensemble kd 48.6 (+10.0) 47.9 (+1.2) 63.9 (+2.5)

+ fine-tune on the original parallel corpus 49.0 (+0.4) 50.0 (+2.1) 66.9 (+3.0)

+ model ensemble 49.4 (+0.4) 53.0 (+3.0) 69.5 (+2.6)

+ reranking 49.5 (+0.1) 53.0 (+0.0) 73.0 (+3.5)

1st 1st 2nd
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Conclusions

• Applying multiple segmentation tools helps on the low-resource 

translation tasks

• Forward-translation could bring gains as well as back-translation

• Fine-tune could contribute a lot if there is a domain mismatch

• Impact brought by back-translation also depends on domain

• Model performance generally benefits from model ensemble and 

reranking

• What one loses on the swings, he gets back on the roundabouts
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