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Abstract

Recent advances of deep learning have been successful in delivering state-of-the-art per-
formance in medical analysis, However, deep neural networks (DNNs) require a large
amount of training data with a high-quality annotation which is not available or expen-
sive in the field of the medical domain. The research of medical domain neural machine
translation(NMT) is largely limited due to the lack of parallel sentences that consist of
medical domain background knowledge annotations. To this end, we propose a Chinese-
Uyghur NMT knowledge-driven dataset, YuQ, which refers to a ground medical domain
knowledge graphs. Our corpus contains 65K parallel sentences from the medical domain
and 130K utterances. By introduce medical domain glossary knowledge to the training
model, we can win the challenge of low translation accuracy in Chinese-Uyghur machine
translation professional terms. We provide several benchmark models. Ablation study
results show that the models can be enhanced by introducing domain knowledge.

1 Introduction
Knowledge can improve the translation quality in NMT models where background knowledge

plays a vital role in the success of text generation(Shang et al., 2015; Li et al., 2016; Shao et
al., 2016). In neural machine translation systems, background knowledge is defined as slot-value
pairs, which provide key information for proper noun translation, and has been well defined and
thoroughly studied in conversational systems (Wen et al., 2015; Zhou et al., 2016). However, in
neural machine translation of terminology, it is important but challenging to leverage background
knowledge, which is represented as either knowledge graphs (Zhu et al., 2017; Zhou et al., 2018a)
or unstructured texts (Ghazvininejad et al., 2018), for making improve the accuracy of proper
noun translation especially medical domain.

Freshly, a variety of knowledge-based text generation corpora have been proposed (Zhou et
al., 2018b; Dinan et al., 2018; Moghe et al., 2018) to fill the gap where previous datasets do not
provide knowledge grounding of the text generation (Sutskever et al., 2014; Bahdanau et al.,
2014; Vaswani et al., 2017). However, these datasets are not suitable for the medical domain
or knowledge planning through neural machine translation based on knowledge. OpenDialKG
(Moon et al., 2019) and DuConv (Wu et al., 2019) use knowledge graphs as knowledge resources.
However, for knowledge-grounded NMT datasets still have the gap.

In this paper, As given in Figure-1, we propose YuQ, a Chinese-Uyghur neural machine
translation dataset towards the medical domain, which is suitable for modeling knowledge inter-
actions in machine translation in the medical domain, including knowledge planning, knowledge
grounding, knowledge adaptations, etc. YuQ contains 65K utterances and 130K parallel cor-
pus in the medical domain. Each sentence is annotated with related knowledge entities in the
knowledge graph, Its effect is as supervision for knowledge interaction modeling. Furthermore,
YuQ contains medical topics, which manually annotated accurately with higher quality than
other datasets. The relations of entity are explicitly defined in the knowledge graph. We pro-
vide a benchmark to evaluate both generation- and retrieval-based neural machine translation



Figure 1: An example in YuQ from the medical domain. The bold text is the related knowledge
that is utilized in NMT.

models on the YuQ dataset with/without access to the medical knowledge. Results show that
knowledge-based contributes to the advancement of these models while existing models are still
not strong enough to deliver knowledge-coherent NMT, indicating a large space for future work.

In summary, this paper makes the following contributions:

• We construct a new dataset, YuQ, for knowledge-driven neural machine translation in
Chinese-Uyghur. YuQ contains 130K utterances in medical domains.

• YuQ provides a benchmark to evaluate the ability of neural machine translation with access
to the corresponding knowledge in medical domains. The corpus can empower the research
of not only knowledge-grounded machine translation text generation but also domain adap-
tation or transfer learning between similar domain or dissimilar domains.

• We provide benchmark models on this corpus to facilitate further research and conduct
extensive experiments. Results show that the models can be enhanced by introducing
background knowledge, but there is still much room for further research.

2 Related work
Recently, neural machine translation has been largely advanced due to the increase of publicly

available machine translation data (Sutskever et al., 2014; Bahdanau et al., 2014; Vaswani et
al., 2017). However, the lack of annotation of background information or related knowledge
results in a significant bottleneck in medical term translation, where the translation accuracy
of medical terms needs to improve. These models produce a translation that is substantially
different from those humans translate, which largely rely on background knowledge.

To facilitate the development of NMT models that mimic human translate, there have been
several knowledge-grounded corpora proposed. (Duan et al., 2020) proposes a new NMT method
that is based on no parallel sentences but can refer to a ground-truth bilingual dictionary. This



new task can effectively improve the accuracy of the translation of specialized words in the
medical domain. However, the Perplexity of translated sentences is not as well as Seq2Seq
architecture. (Chen et al., 2020) considers the importance of the word in the sentence mean-
ing and design a content word-aware NMT to improve translation performance. However, the
accuracy of generated machine translation for medical terminology is often not controllable,
resulting in some mistakes in the generated results. (Hao et al., 2019) presents multi-granularity
self-attention (MG-SA): a neural network that combines multi-head self-attention and phrase
modeling and can capture useful medical-domain phrase information at various levels of gran-
ularities. (Sokolov and Filimonov, 2020) presents an automatic natural language generation
system, capable of generating both human-like interactions and annotations by the means of
paraphrasing to solve manual annotations are expensive and time-consuming.

To obtain the high-quality knowledge-grounded datasets, some studies construct from scratch
with human annotators, based on the unstructured text or structured knowledge graphs. For
instance, several datasets (Zhou et al., 2020; Zhou et al., 2018b; Gopalakrishnan et al., 2019)
have human conversations where participants have access to the unstructured text of related
background knowledge. while OpenDialKG (Moon et al., 2019) and DuConv (Wu et al., 2019)
build up their corpora based on structured knowledge graphs. (Young et al., 2018) proposes
to explicitly augment input text with concepts expanded via 1-hop relations where KG triples
are represented in the sentence embeddings space. (He et al., 2017) propose a system which
iteratively updates KG embeddings and attends over connected entities for response generation.
However, several challenges remain to scale the simulated knowledge graph, for knowledge aug-
mented text generation, (Parthasarathi and Pineau, 2018; Ghazvininejad et al., 2018; Long et
al., 2017) uses embedding vectors obtained from external knowledge sources, Wikipedia, free-
form text, etc. as an auxiliary input to the model in dialog generation. Knowledge graphs can
provide rich structured knowledge facts for better language understanding, (Zhang et al., 2019)
utilize both large-scale textual corpora and KGs to train an enhanced language representation
model (ERNIE), which can take full advantage of lexical, syntactic, and knowledge information
simultaneously.

3 Datasets

The general method of constructing a parallel corpus is to collect, sort, mark, preserve and
utilize professional corpus software for parallel processing and retrieval of the bilingual corpus.
This paper is slightly different. In the processing of Chinese corpus, automatic line partitioning
is carried out first, and the text is translated manually according to the line partition, which
avoids the line labeling and alignment processing of the corpus. In the later retrieval, the method
of combining professional corpus software and self-built retrieval system is adopted.

3.1 Data Collection
By searching a huge number of literatures and investigating in the hospital, a Chinese corpus

from the general practitioner diagnosis and treatment system is finally determined. The data
collected covered seven clinical disciplines: internal medicine, surgery, pediatrics, obstetrics and
Gynecology, infectious diseases, dermatology, and Venereology, and five sense organs science.
Each diagnosis and treatment article was retrieved by using the word crawl tool text, and
a storage directory is established according to the department name and disease type. The
disease name of a single diagnosis and treatment article was stored as a TXT file name, and the
storage format was UTF-8 A total of 593 articles, 7 department catalogs, 65 disease catalogs, and
593 disease diagnosis and treatment corpora have been built. The corpus data is from clinical
diagnosis in the hospital, and the content is authentic and representative. The balance of the
corpus is fully considered in the collection. The proportion of data collected by each department
is respectively Results: internal medicine 26.78%, surgery 15.17%, pediatrics 13.59%, obstetrics
and Gynecology 10.92%, infectious diseases 12.09%, dermatology and Venereology 10.13%, facial



science 11.30%, basically meet the actual needs of patients, and reflect the medical language style
and characteristics.

3.2 Corpus Preprocessing
Chinese medical and health data were collected manually, totaling 45,216 sentences. The

data cover 12 major clinical disciplines: infectious diseases, dermatology, and venereology, fa-
cial features, epidemiology, internal medicine, surgery, pediatrics, obstetrics and gynecology,
neuropathy, psychiatry, ophthalmology, and stomatology, totaling 739 diseases. The collection
contents for each disease include etiology and pathology; Diagnosis and differential diagnosis;
Clinical manifestations; Inspection, auxiliary inspection, and laboratory inspection; Therapy
and physical therapy; Prevention, etc. The acquisition of medical texts is a relatively difficult
task, and its text preprocessing is also quite difficult. General data preprocessing methods are
applied to medical texts, but the effect is not significant, and medical words are often scattered.
For example, the word ”da chang gan jun” is divided into two words ”da chang” and ”gan
jun” in the preprocessing process. The obtained processing results cannot be directly used for
translation model training. The input data set suitable for model training needs to be obtained
through text garbled code filtering, length ratio filtering, text word segmentation, and other
steps in advance. After denoising, the corpus is divided into three levels according to the UTF-8
format: root directory, Department directory and disease category directory.

3.3 Annotation
The actual work of translation processing is after the corpus is automatically entered into the

database. At this time, the work of line segmentation and text entry into the database has been
completed. Translators translate according to the prescribed format, avoiding the problem of
alignment.

3.4 Knowledge Graph Construction
The sparsity and the huge scale of the knowledge are difficult to handle, the annotated med-

ical corpus is expensive, and the knowledge of these medical entities contains both structured
knowledge triples and unstructured knowledge texts, which make the task more general but chal-
lenging. After filtering the start entities which have few knowledge triples, the medical domain
contains 215 start entities, respectively. After filtering the start entities, we built the knowledge
graph. Given the start entities as seed, we build their neighbor entities within three hops. We
merged the start entities and these build entities (nodes in the graph) and relations (edges in
the graph) into a domain-specific knowledge graph for medical domains. The statistics of the
knowledge graphs used in constructing YuQ are provided in Table-1 and Table-2.

Entity Type Explain Number Example
Test Diagnostic Inspection Items 76 blood sugar, urinary ketone body

Disease Disease 23 diabetic cardiomyopathy
Drug Drug 73 glibenclamide, repaglinide
Food Food 19 protein, fat

Symptom Symptoms of disease 24 Drink more, eat more, urinate more
Total Total 215

Table 1: Statistics of the knowledge graph entity types of YuQ

4 Corpus Analysis
Chinese-Uyghur medical parallel corpus is a special corpus. By building a thesaurus, analyzing

the frequency of words, we can make an objective analysis of the lexical features, determine the
position and nature of different words in the lexical list in the medical corpus, and reveal the



Table 2: Statistics of the knowledge graph relationship types of YuQ

distribution law of lexical frequency phenomenon. At the same time, we compare the self-built
corpus with other large-scale general corpora to further statistically analyze the importance of
different words in the special corpus.

4.1 Lexical feature analysis
4.1.1 Construct Vocabulary

Using the EmEditor tool to replace all part-of-speech tags in the segmented corpus with spaces,
A corpus separated by spaces is formed. According to the decreasing order of the occurrence
frequency of each word, i.e. High-frequency words are ranked first and low-frequency words
are ranked second, and the words are numbered with natural numbers. The highest occurrence
frequency is level 1, followed by level 2. Rank is used to represent the word-level sequence and
freq is used to represent the occurrence frequency of words in the corpus, thus constructing the
vocabulary shown in Table-3:

Rank Word Freq P Ln(r) Ln(f )
1 Treatment 2840 0.014196167 0 7.9515595
2 Onset 1488 0.007437992 0.6931472 7.305188
3 Symptoms 1428 0.0071380725 1.098612 3 7.26403
4 Occurrence 1162 0.005808431 7 1.386294 4 7.057898
5 Cause 1095 0.005473522 1.609 438 6.9985094
6 Patient 1033 0.005163606 1.7917595 6.9402223
7 General 957 0.0047837086 1.9459101 6.8638034
8 Serious 916 0.0045787636 2.0794415 6.8200164
9 Operation 866 0.004328831 2.1972246 6.763885
10 mg 832 0.004158877 3 2.3025851 6.7238326

Table 3: Word frequency statistics. Word is a segmented word in the corpus. P is the probability
that words appear in the corpus; Ln(r) and Ln(f) are used to calculate the logarithm of Rank
and freq respectively.

4.1.2 Statistical analysis of word frequency
Make statistics on the vocabulary, A total of 14,470 different words were acquired, Of these,

5,703 words appear only once, 39.41% of the total. Different from the general corpus, Most of
the words with frequency 1 in this corpus are professional words in the medical field. Meaning.
121 words appear twice, 14.66 percent of that total. The word appearing more than three-time,
45.93% of the total. After analyzing the results of word frequency, That is, the 5% word appears
only once, 20% word appears twice. But there is a slight gap, The main reason is that there are
many professional terms in the medical corpus, Word segmentation algorithm needs to be further
improved, In addition, the corpus segmented by the current word segmentation algorithm, It
also contains a large number of English strings, Chinese-English and English-Chinese mixed
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Figure 2: The top ten high-frequency words and frequency of Chinese Medical Corpus.

words, 323 with the frequency of 1, 104 with the frequency of 2 and 167 with other frequencies,
which also conforms to the characteristics of medical corpus and includes a large number of
transliterated and abbreviated foreign words, such as tc, r globulin, etc. The 10 words with the
highest frequency in the vocabulary list and their frequencies are shown in Table-2, which fully
reflect the medical characteristics of corpus data.

4.2 Contrastive Analysis of Lexical Features

The People’s Daily has a corpus of nearly 2 million words in January, with a wide range of
contents and a huge amount of data. Taking this as a reference corpus, the corpus retrieval
software AntConc is used to compare and analyze the frequency of each word and word in the
Chinese medical corpus word and word frequency list with the frequency of the word and word
in the reference corpus to reflect the importance and particularity of the word and word to the
medical corpus.

The list of word and word frequency includes information: Rank (word/word level), freq
(frequency), word (word/word) and keyness (significant difference in frequency, the frequency
difference between the same word and word in the two corpora, the greater the difference, the
greater the keyness value). Some comparative statistical results are shown in Table-4.

Rank Freq Keyness Word
1 6 396 12213.213 Can
2 5 462 9 915.505 Or
3 2 840 6 381.669 Treatment
4 2 260 5 228.570 those
5 1 846 4 577.089 sex
6 2 661 3 756.796 and
7 1 428 3 519.548 Symptoms
8 1 493 2 949.540 Heart
9 1 707 2 469.261 as
10 1 144 2 386.947 Disease

Table 4: Statistical Analysis for Contrast of Word Frequency Characteristics between our corpus
and People’s Daily corpora.



4.2.1 Comparative Result Analysis
Corpus data using existing segmentation tools, based on Chinese medicine, shard 16637 words,

which ”Word” word frequency is greater than the reference corpus, 14050, 2587 less than the
reference corpus, respectively constructed two-word frequency table.

Observe word frequency table of 14050 words, found keyness values by the maximum first
became smaller, close to zero, until it is equal to zero, according to the keyness values change,
the analysis of word frequency table is as follows:

In the first part, the value of keyness is very large at the beginning. Keyness >5 is taken as
the boundary, and there are 7840 words, which are most commonly used in medical treatment,
such as treatment and patient.

The second part, in order to 0 or less keyness 5 or less as the boundary, a total of 6210 words,
at this time is divided into two cases: (1) to 0 or less keyness 5 or less and freq = 1, a total of
5089 words, observed that these words not only keyness value is small, gradually tends to zero,
word frequency and minimum, these words are not commonly used for the two corpora, several
medical field has the characteristics of medical is not commonly used words, such as early focal
infarction disease, diffuse peritoneal infection, etc. With 321 as the letter combinations, such
as athabasca, arvd. Athabasca, Arvd is acute obstructive suppurative cholangitis, respectively,
the abbreviation of right ventricular cardiomyopathy arrhythmia caused by sex. (2) 0 or less
keyness 5 or less and freq > 1, a total of 1121 words, this part of the vocabulary, freq value is
very high, when keyness approach to find these words, such as, in the early morning, belong to
the more commonly used words, basic is commonly used in the medical corpus, also commonly
used in People’s Daily corpus, frequency is similar in the two corpora.

Then Observe word frequency table of 2587 words:
(1) Keyness value is the largest at first and then decreases from the maximum. Contrary to

the first part, when keyness value is large, it is all the data with high word frequency in the
corpus of People’s Daily, such as China, problems, development, etc.

(2) When keyness value is small and FREq =1, the specificity of words cannot be seen, which
is related to the fact that People’s Daily is a general corpus. (3) when the keyness value smaller
and larger freq, a total of 618 words, belong to two corpora are more frequently used vocabulary,
but inadequate medical characteristics, such as a hospital bed, etc. After statistical analysis,
combined with artificial proofreading, easily from 7840 words and 5089 words, sort out the
medical special corpus theme vocabulary. Through the analysis of the above characteristics,
not only reflects the corpus itself vocabulary characteristics, common vocabulary, vocabulary,
etc. That validates whether corpus construction and late for further study of natural language
processing technology to lay the foundation of medicine.

5 Experiments

5.1 Models
As provided baseline models for knowledge-driven NMT modeling, we evaluate such models

on our corpus generation-based and retrieval-based models. To investigate the knowledge infor-
mation annotation results, we evaluate the models with/without introducing to the knowledge
graph of our dataset.

5.1.1 Generation-based Models
Language Model(LM) (Bengio et al., 2003): We train a language model that maximizes the

log likelihood: logP (x) =
∑

t logP (xt|x < t), where x denotes a long sentence that sequentially
concatenates all the utterances of a machine translation.

Seq2Seq (Sutskever et al., 2014): An encoder-decoder model. The input of the encoder is the
concatenation of the past k−1 utterances, while the target output of the decoder was the k− th
utterance. If there are fewer than k − 1 sentences in the NMT history, all the past utterances
would be used as input.



RNNSearch (Bahdanau et al., 2014) RNNSearch is to improve the performance of Seq2Seq
by the attention mechanism, where each word in Y is conditioned on different context vector
c, with the observation that each word in Y may relate to different parts in x. In particular,
yi corresponds to a context vector ci, and ci is a weighted average of the encoder hidden states
h1, ..., hT :

ci =

Tx∑
j=1

aijhj (1)

where ai,j is computed by:

α =
exp(eij)∑T
k=1 exp(eik)

(2)

eij = g(st−1, hj) (3)

where g is a multilayer perceptron.
Transformer (Vaswani et al., 2017): Transformer abandons the recurrent network structure

of RNN and models a piece of text entirely based on attention mechanisms. The most important
module of the coding unit is the Self-Attention module, which can be described as:

Attention(Q,K, V ) = Softmax

(
QKT
√
dk

)
V (4)

To extend the ability of the model to focus on different locations and to increase the represen-
tation learning capacity of subspaces for attention units, Transformer adopts the ”multi-head”
mode that can be expressed as:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O (5)

headi = Attention(QWQ
i ,KWK

i , V WK
i ) (6)

THUMT (Zhang et al., 2017): THUMT is an open-source toolkit for neural machine trans-
lation developed by the Natural Language Processing Group at Tsinghua University and a new
implementation developed with TensorFlow.

5.1.2 Retrieval-based Model
BERT (Devlin et al., 2019): We adapt this deep bidirectional transformers (Vaswani et al.,

2017) as a retrieval-based model. For each utterance, we extract medical keywords and retrieve
10 translation candidates. The training task is to predict whether a candidate target utterance
is the fitting source utterance given the source utterance where a sigmoid function is used to
output the conditional probability p(xt|x0:t−1) can be modeled by a probability distribution over
the vocabulary given linguistic context x0:t−1. The context x0:t−1 is modeled by neural encoder
fenc(·), and the conditional probability:

p(xt|x0:t−1) = gLM

(
fenc(x0:t−1)

)
(7)

where gLM(·) is the prediction layer. We select the candidate sentence with the largest prob-
ability.

5.1.3 Knowledge-aware Models
A key-value memory module (Miller et al., 2016) is introduced to the aforementioned models

to utilize the knowledge information. We treat all knowledge triples mentioned in an NMT
as the knowledge information in the memory module. For a triple that is indexed by i, we
represent the key memory and the value memory respectively as a key vector ki and a value



vector vi, where ki is the average word embeddings of the head entity and the relation, and vi
is those of the tail entity. We use a query vector q to attend to the key vectors ki(i = 1, 2, ...):
ai = softmaxxi(q

Tki), then the weight sum of the value vectors vi(i = 1, 2, ...), v =
∑

i aivi, is
incorporated into the decoding process (for the generation-based models, concatenat with the
initial state of the decoder) or the classification (for the retrieval-based model, concatenat with
the <CLS> vector). For Seq2Seq, q is the final hidden state of the encoder. For RNNSearch
and Transfomer, we treat the context vector as the query, while for BERT, the output vector of
<CLS> is used.

Our dataset has a sentence-level annotation of the triples of knowledge used by each utterance.
In order to compel the knowledge-aware models to attend to the KG triples, we applied an extra
loss of focus.

Latt = − 1

|truth|
∑

i∈truth
log ai (8)

where truth is the set of indexes of triples that are used in the true response. The total loss are
the weighted sum of L(l) and Latt:

L
(l)
tot = L

(l)
0 + λLatt, l ∈ g, r. (9)

The knowledge-enhanced BERT is initialized from the fine-tuned BERT, and the transformer
parameters are frozen during training the knowledge related modules. The purpose is to exclude
the impact of the deep transformers but only examine the potential effects introduced by the
background knowledge.

5.2 Setup
We implement the above models with Pytorch while THUMT implement by tensorflow. The

type of RNN network units is all GRU and the number of hidden units of GRU cells is all set
to 200. ADAM as used to optimize all the models with the initial learning rate of 1× 10−5 for
BERT and 1× 10−3 for others. The mini-batch sizes are set to 2 sentences for LM and 32 pairs
of source- and target-sentence for Seq2Seq.

5.3 Automatic Evaluation
5.3.1 Metrics

We adopt BLEU, Rouge, and Perplexity as the evaluation metrics to measure the quality of
the generated response. For BLEU, we employ the values of BLEU 1-4 and show the value of
Rouge-1/2/L. Intuitively, the higher BLEU score and Rouge score mean more n-gram overlaps
between the generated responses, and thereby indicate the better performance. Nevertheless,
Perplexity is a well-established performance metric for generative text generation models. On the
other hand, Perplexity explicitly measures the ability of the model to account for the syntactic
structure of the dialogue, and the syntactic structure of each utterance and lower perplexity is
indicative of a better model.

5.3.2 Results
The results are shown in Table-5. We analyze the results from the following viewpoints:
The influence of knowledge: In the medical domains, the knowledge-aware BERT model

achieves the best performance in all of the metrics, as it retrieves the golden-truth response
at a fairly high rate. The transformer-based models perform best in BLEU-k among all
the generation-based baselines without considering the knowledge. Knowledge-aware Trans-
former has better results of BLEU-k and better results of PPL, while the knowledge-enhanced
Transformer–based models achieve the best metrics scores among all the generation-based mod-
els.



Comparison between models: In the medical domains, the knowledge-aware BERT model
achieves the best performance in all of the metrics, as it retrieves the golden-truth response
at a fairly high rate. The transformer-based models perform best in BLEU-k among all
the generation-based baselines without considering the knowledge. Knowledge-aware Trans-
former has better results of BLEU-k and better results of PPL, while the knowledge-enhanced
Transformer–based models achieve the best metrics scores among all the generation-based mod-
els.

Model PPL BLEU-1/2/3/4 Rouge-1/2/L
LM 45.44 10.27 2.31 0.34 0.09 0.271 0.162 0.259

Seq2Seq 41.13 17.19 6.67 1.06 0.16 0.368 0.167 0.273
RNNSearch 40.45 20.97 8.40 1.71 1.27 0.387 0.124 0.248
Transformer 39.28 25.08 10.37 2.43 2.75 0.394 0.158 0.279

THUMT 21.91 24.22 12.40 2.71 2.27 0.384 0.207 0.313
BERT 37.32 27.63 14.32 3.35 3.13 0.427 0.216 0.314

Transformer+know 37.24 30.29 15.79 3.15 3.02 0.453 0.205 0.317
THUMT+know 37.91 30.41 18.43 3.72 3.01 0.498 0.237 0.349
BERT+know 33.11 33.14 20.54 4.93 3.91 0.592 0.481 0.591

Table 5: Automatic evaluation. The best results of generative models and retrieval models are
in bold and underlined respectively. “+ know”means the models enhanced by the knowledge
base.

5.4 Manual Evaluation
To better understand the quality of the generated responses from the semantic and knowledge

perspective, we conducted the manual evaluation for knowledge-aware BERT, knowledge-aware
RNNSearch, and Transformer, which have achieved advantageous performance in automatic
evaluation.

5.5 Metrics
In terms of the fluency and coherence metrics, human annotators are asked to score a generated

response.
Fluency (rating scale 0,1,2) is described as if the answer is normal and fluid:

• Grade 0 (bad): the grammatical mistakes are not articulate and challenging to comprehend.

• Grade 1 (fair): includes but yet clear grammatical errors.

• Grade 2 (good): humans generate it fluently and plausibly.

Coherence (rating scale is 0,1,2) is characterized as whether an answer to the context and
knowledge information is valid and coherent:

• Grade 0 (bad): History is meaningless.

• Grade 1 (fair): important to the context, but not consistent with the details on expertise.

• Grade 2 (good): both context-relevant and consistent with background information.

5.6 Annotation Statistics
We randomly sampled about 500 contexts from the test sets and generated sentences by each

model. These 1,500 parallel sentences pairs in total and related knowledge graphs are presented
to three human annotators.



5.7 Results
The findings are seen in the Table-3. As can be shown, knowledge-aware BERT greatly out-

performs other models in all dimensions in the medical realms, which correlates with automated
evaluation performance.The Fluency is at 2.00 because all human-written sentences are the col-
lected responses. The fluency scores of both generation-based models are approximately 2.00
suggesting that the translation produced is fluent and grammatical. The BERT and knowledge-
aware BERT Coherence scores are higher than 1.00 but still have a big gap of 2.00, meaning that
in most instances the translation produced is important to the background but not consistent
with knowledge-aware facts. The Coherence score is substantially enhanced after integrating
the knowledge information into BERT, as the knowledge information is more reflected in the
produced translation.

0 0.5 1 1.5 2 2.5

Transformer

THUMT

Transformer+Know

THUMT + Know

BERT + Know

Coherence Fluency

Figure 3: Manual evaluation between three generative models. “+ know”means the models
enhanced by knowledge information.

5.8 Case Study
Some sample translations in the medical realms provided by knowledge-aware BERT are

seen in Table-6. As we can see, knowledge-aware BERT is able to produce knowledge-based
translation after the presentation of knowledge content, such as translation with expertise in
the medical domain. However, it is still challenging for information-aware BERT to produce
knowledge-coherent responses with respect to unstructured text awareness as modeling knowl-
edge of unstructured texts requires more powerful models.

Translation 
Knowledge Triple 

Head Entity Relation Tail Entity 
CN: 眶下间隙蜂窝织炎 

زىغېئ  
ڭىنىقۇلشوب  
زۈی كھڭىئ  

ىمسىق  
نامىسكھنۆك  

ىغۇللای املۇقوت  

قىلىكنىلېك  
ىرىلىداپىئ  

(clinical 
manifestation) 

ۋھل ىقىرىقۇی  
ۇدىقىچ پىششىئ ، 
كۇپلاك-نۇرۇب  

ىسىچقىرېئ  
ۇدىتېك پاقوی  

Ug: ىمسىق زۈی كھڭىئ ڭىنىقۇلشوب زىغېئ  
ىغۇللای املۇقوت نامىسكھنۆك  

CN: 感染发生于眼眶下方，上颌骨前壁
与面部表情肌之间。 

Ug: ىكنىتسۈئ ،ىپىرھت ىتسائ ڭىنقاپاق شىنىلمۇقۇی  
ۇدىلۇب كىلرھنىرۆك ادىرىلمىسىق زۈی ەۋ ىدلائ ڭىنكھڭىئ شلااۋاد .  

（cure） 

نەدھب نۈتۈپ  
ىنىرىلكىتوئىبىتنائ  

پۇرۇتشلاسام  
اقشىنىلمۇقۇی  
شۇرۇت ىشراق  

CN:全身配合抗生素抗感染。 
Ug: پۇرۇتشلاسام ىنىرىلكىتوئىبىتنائ نەدھب نۈتۈپ  

شۇرۇت ىشراق اقشىنىلمۇقۇی  
 

Table 6: Cases of the medical domain. Text is the knowledge used by the golden truth or the
knowledge correctly utilized by the models.



5.9 Ablation Study
To evaluate the contributions of key factors in our method, we perform an ablation study.
The influence of BPE on the Morphological segmentation of Uygur language In

order to verify the need for morphological segmentation of Uyghur language before using BPE
technology, This paper compares the performance of BPE on Uyghur data without morpho-
logical segmentation and BPE on data after morphological segmentation under neural machine
translation system respectively. According to Table-7, BLEU values of the same data set on
the test set are 11.56 and 10.28 respectively. The former is 1.28 higher than the latter, and
the improvement is not significant. Therefore, when BPE technology is adopted for the Uyghur
language, morphological segmentation can be avoided, and BPE technology can effectively solve
the problem of sparse data matrix.

vocabulary Uyghur Morphological Segmentation BLEU
12000 +Morphological segmentation 11.56
12000 -Morphological segmentation 10.28

Table 7: The Influence of Uyghur Morphological Segmentation on BLEU Value.

The Effect of Word List Size on Machine Translation Performance The above ex-
perimental conclusions show that there is no great influence on whether Uyghur language is
morphologically segmented and then BPE technology is used. The performance comparison
experiment of neural machine translation methods based on the self-attention mechanism is
continued under different vocabulary sizes. Table-8 experimental results show that Uyghur lan-
guage does not undergo morphological segmentation, and the BLEU value with a vocabulary
size of 32000 is 19.89 higher than that of Uyghur language with morphological segmentation
and a vocabulary size of 12000. This shows that on the scarce resources and rich forms of
Chinese-Uygur data set, Compared with morphological segmentation, The size of the word list
can improve the performance of machine translation, The reason may be that morphological
segmentation leads to the lack of semantic information at the word level, For enlarging the
vocabulary, it can effectively reduce the number of unregistered words and save the effective
information at the word level without losing. The neural network based on the self-attention
mechanism can better learn the morphological structure and features of words, thus effectively
improving the performance of machine translation.

vocabulary Uyghur Morphological Segmentation BLEU
32000 -Morphological segmentation 30.17
12000 +Morphological segmentation 11.56

Table 8: The influence of vocabulary size and morphological segmentation on neural machine
translation.

6 Conclusion and Future Work
In this paper, we propose a high-quality manually annotated Chinese-Uyghur medical-domain

corpus for knowledge-driven neural machine translation, YuQ. It contains 130K utterances and
65K parallel sentences, with an average length of 19.0. Each parallel sentence contains sentence-
level annotations that map each utterance with the medical knowledge triples. The dataset
provides a benchmark to evaluate the ability to model knowledge-driven translation. We pro-
vide generation and retrieval-based benchmark models to facilitate further research. Extensive
experiments illustrate that NMT models can be enhanced by introducing knowledge, whereas
there is still much room in knowledge-grounded neural machine translation modeling for fu-
ture work. We hope that this dataset facilitates future research on the medical-domain neural
machine translation problem.
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