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Abstract. Most of the existing methods of document-level neural ma-
chine translation (NMT) integrate more textual information by extend-
ing the scope of sentence encoding. Usually, the sentence-level representa-
tion is incorporated (via attention or gate mechanism) in these methods,
which makes them straightforward but rough, and it is difficult to distin-
guish useful contextual information from noises. Furthermore, the longer
the encoding length is, the more difficult it is for the model to grasp
the inter-dependency between sentences. In this paper, a document-level
NMT method based on a routing algorithm is presented, which can au-
tomatically select context information. The routing mechanism endows
the current source sentence with the ability to decide which words can
become its context. This leads the method to merge the inter-sentence de-
pendencies in a more flexible and elegant way, and model local structure
information more effectively. At the same time, this structured informa-
tion selection mechanism will also alleviate the possible problems caused
by long-distance encoding. Experimental results show that our method
is 2.91 BLEU higher than the Transformer model on the public dataset
of ZH-EN, and is superior to most of the state-of-the-art document-level
NMT models.

Keywords: Natural Language Processing · Document-Level Neural Ma-
chine Translation · Routing Algorithm.

1 Introduction

With the development of deep learning methods, neural machine translation(NMT)
has made remarkable progress in most language pairs. However, the standard
NMT methods are first designed for sentence-level [1–3], which may bring some
document-level errors, such as document inconsistency [4–9]. In order to reduce
the errors caused by sentence-level NMT when translating discourses, a large
number of document-level NMT methods have been proposed to improve the
translation performance by using context outside a single sentence.
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The most recent context-aware methods take the context of the current sen-
tence as inputs of NMT model, and attach another input stream in parallel [4,
5, 10]. Therefore, most researchers tend to reform the mature NMT models to
merge the representation from previous sentences as context [4, 5, 11–14] into
every layer of the encoder or decoder to consider the information from cross sen-
tences. To improve the comprehension of the current text, people can combine
with the future context. It is very common for us, not to mention the neural
network lacking prior knowledge and common sense. Consequently, context is
not necessarily limited to the sentences before the current sentence, it can also
come from the future, which is ignored but effective. However, if we simply and
roughly expand the scope of sentences as inputs without filtering them, it may
bring burden to the model. According to [15], information in the context is not
always useful. We are supposed to increase the content of context selectively.

This paper draws lessons from a routing method [16] of multilingual NMT
(MNMT), and puts forward a document-level NMT routing method based on this
algorithm. In MNMT, researchers find that using a mix of shared and language-
specific parameters can help the models obtain a great improvement in exploring
universal MNMT, but keep the question of when and where language-specific
capacity matters most. This is similar to what kind of context is the most useful
in document-level NMT. According to [15], we can assume that every word in
the context contains different levels of document-aware information. In order to
filter redundant information of context, we use routing algorithm, which helps
the model select words whose document-level information is more important as
context automatically. On the one hand, we avoid long-distance encoding. On
the other hand, redundant contextual information is filtered out.

In our experiments, we choose the sentence before the current sentence and
the sentence next to the current sentence as context. The results show that the
changes we made improve the performance of document-level NMT. Compared
with the methods which utilize the whole document as context [9, 17], our method
still has competitiveness, especially on the dataset of ZH-EN.

2 Related Work

With the latest development and performance improvements of neural networks,
people are more interested in document-level MT and textual context also shows
its importance to machine translation. Based on the encoder-decoder NMT
framework, existing works mainly use the following three methods to introduce
document-level information:

Single-Encoder Approach. This kind of method expands the range of sen-
tences when inputting them into the model, such as [6, 18–20], which has done
a lot of research about the input of model, including the expansion of encoder
input and decoder input. This kind of method is relatively rough for the appli-
cation of context, which is the earliest attempt of encoder-decoder framework.
These attempts proved that not only the previous context but also the future
context can improve the translation effect, which is gradually ignored in later
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studies. In addition, the method of fusing context at the encoder side contributes
more than the method of fusing context at the decoder side. Because fusion at
the decoder side may lead to error propagation.

Multi-Encoder Approach. According to when and where to fuse the output
of the multi-encoder inside the decoder (see Fig. 1), [13] or outside the decoder
(see Fig. 2), [13, 21, 22]. Reference [23] divides the multi-encoder method into
inside multi-encoders [4, 19, 24, 25] and outside multi-encoders [5, 9, 17, 26]. The
Multi-encoder method mainly adopts two fusion methods: 1) Some methods use
attention mechanisms to encode context statements into the encoder or decoder,
for example, Reference [4] inserts a context-attention layer into the model; 2)
the others use the gate mechanism to aggregate context, thus learning anaphora
resolution. These methods are similar in that they all add Transformer models
with additional context-related modules.

Post Processing. Reference [27] uses deliberation network, which adds another
decoder after Transformer, and employs reward teacher to model coherence for
document-level machine translation. Reference [8] uses another method called
document-level repair, which makes full use of monolingual document-level data
in the target language.

Inspired by previous works, we add an extra context module to the Trans-
former model to extract context information. Reference [15] suggests that in
document-level NMT, sometimes context is too long to simplify calculations,
and in fact, a lot of information in the context is actually unnecessary. They
retain the most likely words of the context, such as named entities and special
words like POS. Combined with the above points, we use the routing method in
multilingual NMT, and hope that the model itself can combine the input sen-
tence to determine which words are useful for forming context, not just named
entities and POS, so as to improve the translation effect.

Fig. 1. Fusion inside the decoder Fig. 2. Fusion outside the decoder

3 Background

3.1 Document-Level NMT

Compared with sentence-level NMT, document-level NMT considers contextual
information. We assume that (X,Y ) ∈ C where X represents source sentences
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and Y represents target sentences. We use xi to express the i-th sentence in
X. yi denotes the i-th sentence in Y . In order to generate target sentence yk,
document-level NMT is supposed to make full use of the contextual information
of source sentence xk. As the input of encoder, x is converted into the hidden
state H. We define set X<>k as context of xk, and then we can approximate the
document-level translation probability as:

P (yk|xk; θ) =

n∏
i=1

p(yki |y<i, H
k, X<>k; θ) (1)

3.2 Transformer

Encoder-Decoder architecture composed of sequence models, like RNN or LSTM,
has made great improvement in NMT [2, 3]. However, Transformer [28], which
relies entirely on attention mechanism, has surpassed most previous models.
Considering the above points, we choose Transformer as our basic model.

To avoid gradient vanishing or explosion, the following residual normalization
structure is used for the Transformer block:

z = LayerNorm(h+ f(h)) (2)

where h represents the output from the last block, z is the output of this block,
LayerNorm(·) means Layer Normalization and f(·) can be MultiHead Atten-
tion or Feed-Forward Network. The encoder of Transformer includes Multi-Head
Self-Attention and Feed-Forward Network. Though the decoder has similar sub-
layers, another sub-layer called Encoder-Decoder Attention is inserted between
these layers. With the help of MultiHead Attention, the model can pay attention
to information from different representation subspaces:

Output = MultiHead(h, h, h) (3)

Output = MultiHead(z, Eout, Eout) (4)

where Eout represents the encoder output, h and z come from last block. When
fed into the first layer of model, h represents the word embedding of sen-
tence. Eq. (3) and Eq. (4) stand for the calculation of Self Attention and
EncDecAttention respectively.

3.3 Conditional Language-Specific Routing (CLSR)

From the perspective of the mapping between language pairs, the MNMT model
has three strategies: many-to-one, one-to-many and many-to-many. Reference [29]
raises the question that just using specific language signs is not enough to ex-
plore the features of specific language. To make a thorough inquiry of when
and where language specific modeling matters most in MNMT, reference [16]
introduces conditional language-specific routing (CLSR), a method that keeps
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the balance between language-specific path and shared path as controlled by the
gates. Eq. (2) can be modified as follows:

z = LayerNorm(h+ CLSR(f(h))) (5)

CLSR learns a gate g(·) for each input token, which helps blocks in Transformer
selectively route information through language-specific path hlang or shared path
hshared:

CLSR(f(h)) = g(h)� hlang + (1− g(h))� hshared (6)

hlang = f(h)W lang, hshared = f(h)W shared (7)

where W shared represents the trainable parameters shared across languages and
W lang is the trainable parameters for specific languages. The gate g(·) is com-
puted from a two-layer feed-forward network G(·), and zero-mean Gaussian noise
is used to discretize it during training:

g(h) = σ(G(h) + α(t)N (0, 1)) (8)

G(h) = Relu(hW1 + b)W2 (9)

where σ(·) is the logisitic-sigmoid function, and W1 as well as W2 is trainable
parameters. α(·) is a linearly function and increases with training step t. When
inferencing, g(h) is replaced with a decision rule: g(h) = δ(G(h) > 0), where δ(·)
is a Dirac measure.

4 Method

In this section, we will introduce how we apply the aforementioned routing al-
gorithm to selecting words as context automatically for document-level NMT in
detail. Before that, we will introduce the symbols used in the model.
Assuming X and Y represent the source and target sentences in corpus C. We
define that clk−1

, clk1
are outputs from the l-th Prev Encoder Layer and Post

Encoder Layer. xlk−1
, xlk1

and xlk are the input of the l-th encoder layer. When

l = 0, xlk = xk, it’s the same as xlk−1
and xlk1

. clk means the l-th layer context

hidden state, which is got by gate aggregation. xlk,self−attn is used to represent
the output from self-attention layer of l-th layer. We can see the details of the
model in Fig. 3.

4.1 Inputs of Our Model

Considering the differences between sentence-level NMT and document-level
NMT, it’s necessary to introduce the inputs composition of our model. In Trans-
former, researchers use sine and cosine functions to calculate position embed-
ding, which helps the attention mechanism pay attention to the word position
information added to the word embedding. While in document-level NMT, the
information of sentences order has its significance. We refer to the idea of [10],
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Fig. 3. The main architecture of our model. The two context-encoders share param-
eters. Auto-Selection Layer takes xl

k,self−attn, clk−1
and clk1

as input to compute clk
which represents context information. To help xl

k,self−attn attend over all positions in

the input context, Context Attention Layer takes xl
k,self−attn as query and clk as key

and value, in which case, we can get zlk.

in which way, we add the segment embedding to the position embedding and the
word embedding. In Fig. 4, we take x0k as an example, which is the input of the
first layer of our model, and we add different segment embedding to x0k−1

and

x0k1
(0 indicates the previous context, 2 indicates the future context).

Fig. 4. The details about the composition of the inputs of the first layer of encoders,
taking x0

k as example, segment embeddings are set as 1 to represent the current sen-
tence.

4.2 Context Attention

First of all, we explain how the model integrates context into the translation
sentence. Between self-attention layer and feed-forward layer of the encoder for
xk, we insert context attention layer, which is defined as follows:

hAS = MultiHead(xlk,self−attn, c
l
k, c

l
k) (10)
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zlk = LayerNorm(xlk,self−attn + hAS) (11)

where zlk is the output of this layer and context hidden state clk is computed by
the algorithm following, which will be introduced in detail.

Fig. 5. The detail of Auto-Selection Layer. Gate is computed by xl
k,self−attn

4.3 Auto-Selection

Since we choose the sentences around x as context, we must filter out the infor-
mation that may bring unnecessary noise from context. Inspired by CLSR, we
hope that our model can help x keep the balance between the information from
different sentences and filter out noise, just as CLSR helps MNMT models to
decide when and where to use language-specific parameters or shared parame-
ters4:

clk = g(xlk,self−attn)� hk−1 + (1− g(xlk,self−attn))� hk1 (12)

with hk−1
= clk−1

Wk−1
, hk1

= clk1
Wk1

(13)

Wk−1 as well as Wk1 is trainable parameters.

G(xlk,self−attn) = Relu(xlk,self−attnW−1 + b)W1 (14)

g(xlk,self−attn) = σ(G(xlk,self−attn)) (15)

we can see Fig. 5 for details.
Compared with CLSR, we git rid of the zero-mean Gaussian noise, and totally

let xlk,self−attn itself to design its context. About other aspects of computation
for g(·), following the configuration of CLSR, we apply a two-layers feed-forward
network and use Relu(·) and σ(·) as activation function.

Now, we can summarize our training process as follows:

– The inputs xlk−1, x
l
k1

are fed into the Prev/Post Encoder Layer respectively.
The Prev Encoder Layer shares parameters with the Post Encoder Layer.
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– The outputs of the Prev/Post Encoder Layer are sent to the encoder of xlk
and xlk is used to calculate gate, which helps the model integrate more useful
information from context to calculate the output of the encoder.

– The steps above are repeated for N times, i.e. the number of layers. Then,
the outputs of encoder are sent to the decoder.

– Training the model. Continue the decoding process until meeting the end
token.

5 Experiments

We mainly conduct experiments on Chinese → English and English → German
task to verify our model, the details of datasets are as follows and listed in
Table 1.

Table 1. The number of sentences in the datasets

Datasets Training Dev Test

ZH-EN TED 0.20M 0.88K 5.47K

TED 0.20M 8.96K 2.26K
EN-DE NEWS 0.22M 2.16K 2.99K

Europarl 1.66M 3.58K 5.13K

5.1 Datasets

For fair comparison, we choose four widely used document-level parallel datasets,
one Chinese → English dataset and three English → German datasets:

– TED (ZH-EN, TED). The Chinese → English datasets are from IWSLT
2015, where we mainly conduct our experiments. Following the work of [9],
we take dev2010 as development set and tst2010-2013 as test set.

– TED (EN-DE, TED). According to [21], we choose IWSLT17 [30] as datasets
for training. Tst2016-2017 is test set and the rest is the development set.

– News-Commentary (EN-DE, NEWS). Following [9] and [21], we obtain News
Commentary v11 for training, WMT newstest 2015 for developing and WMT
newstest2016 for testing.

– Europarl (EN-DE, Europarl). Train set, development set and test set are
extracted from the Europarl v7 [31]. Details are mentioned in [21].

For TED ZH-EN dataset, we first use jieba for word segmentation. In all
translation tasks, we tokenize the data with MOSE tokenizer [32] and apply
byte-pair-encoding (BPE) algorithm [33] to encode words with sub-word units.
We also use tools offered by Fairseq [34] to preprocess all dataset, in which form
that model can accept.
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5.2 Training Detail

On the basis of source code provided by Fairseq [34], we show detailed strategies
for training the model. Adam [35] is the optimizer of the network with (β1 =
0.9, β2 = 0.98). Warmup−updates is set 8000, dropout is 0.1, where warmup−
init − lr is 10−7. We set the batch size to 25,000 per batch and limit sentence
length to 150 BPE tokens. For models on TED Zh-En, hidden dimension is
dz = 256, and the feed-forward dimension is dffn = 512. We use 4 layers in
the encoder and decoder, each layer has 8 heads of attention. For the reset
datasets, the hidden dimension and feed-forward dimension are set to 512/2048
respectively. Note that the above hyper-parameter settings are the same as those
used in the baseline models.

5.3 Main Results

To make the results fair, we follow the work of [9] and [21] who use sacrebleu [36]
to evaluate the translation quality. In addition to the baseline Transformer, we
also compare our model with five state-of-the-art document-level NMT models
including:

– Document-aware Transformer(DocT, [4]). Introducing context information
by adding context sub-layers at each encoder and decoder layer.

– Hierarchical Attention NMT(HAN, [13]). Capturing the context in a struc-
tured and dynamic manner.

– Selective Attention NMT(SAN, [21]) Using sparse attention to selectively
focus on relevant sentences.

– Query-guided Capsule Network(QCN, [22]). Clustering context information
into different perspectives from which the target translation may concern.

– Arbitrary Context NMT(ACN, [9]). Being able to deal with documents con-
taining any number of sentences.

Table 2. BLEU results on four datasets. The score in parentheses represents the BLEU
of their baseline.

ZH-EN EN-DE

# Models
TED

(baseline)
TED

(baseline)
NEWS

(baseline)
Europarl
(baseline)

1 DocT(2018)[4] n/a 24.00(23.28) 23.08(22.78) 29.32(28.72)
2 HAN(2018)[13] 17.90(17.00) 24.58(23.28) 25.03(22.78) 28.60(28.72)
3 SAN(2019)[21] n/a 24.42(23.28) 24.84(22.78) 29.75(28.72)
4 QCN(2019)[22] n/a 25.19(23.28) 22.37(21.67) 29.82(28.72)
5 ACN(2020)[9] 19.10(17.00) 25.10(23.10) 24.91(22.40) 30.40(29.40)

Ours

6 Transformer(2017)[28] 17.11 23.20 23.13 29.49
7 Our Model 20.02 25.01 24.03 29.87
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As shown in Table 2, the proposed model improves the BLEU scores of the
aforementioned datasets by 2.91, 1.81, 0.90 and 0.38 points compared with the
baseline of sentence-level Transformer. Especially on TED ZH-EN, our model
makes a significant improvement and surpasses the best model that we know by
1 point, showing its outstanding performance. Although our model is not the best
on datasets of EN-DE, it is still capable of competing with other outstanding
document-level NMT models, like SAN [21] and QCN [22]. We make the following
analysis of the reasons for these listed results:

– Firstly, apposite translation requires more context, while document informa-
tion is mainly used for semantic disambiguation. Therefore, using the whole
document as context, like ACN [9] may perform better. However, after ana-
lyzing the translation results, we find that our method which uses word-level
automatic routing has more advantages in structured information modeling.
Besides, the proposed method is significantly improved on the datasets of
TED, which may contains more structured information than the others. See
Section 5.5 for details.

– Secondly, when we reproduced the experiment of DocT [4], we found that
the improvement brought by training strategy is little. Considering the phe-
nomenon above, we do not take the two-step training strategy. But we will
keep following it in the future.

– Finally, the context-encoder and the module of auto-selection are just up-
dated by the back propagation of the loss between the label and the predicted
value. Due to the lack of other supervision, the larger the dataset is, the eas-
ier the model overfits the label. Therefore, it can be understood that our
method is not significantly improved on the dataset Europarl.

Table 3. RESULTS OF ABLATION STUDY

ZH-EN
# Models TED

1 Transformer[28] 17.11
2 DocT[4] 18.82
3 DocT+AS 19.72

4 Ours(online) 19.50
5 Ours(offline) 20.02

5.4 Ablation Study

We list our results of ablation in Table 3. We mainly produce our ablation study
for the following aspects:

Offline vs. Online Document MT SAN [21] divides the source of context
into two cases: offline context is both the context of the past and the context
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of the future; online context is only the context of the past. In this part, we
compare the result of offline and online document-level MT settings on TED
ZH-EN. From the Table 3, we can find that the result of offline(row 4) is close to
that of online(row 5) settings. It is quite self-explanatory that the post sentence
as part of context really works in our methods. The proposed method can be
extended to the full text as well, but it has achieved impressive performance even
if only the previous and the post context sentences are considered, or even only
the previous one. Moreover, usually the discourse structure information of local
context is usually more meaningful to translation, so we mainly use pre-context
and post-context sentences in our experiments.

Universality According to the experiment of online document-level MT, we
make an assumption that whether we can apply our methods in other document-
level MT methods. To test our intuition, we reproduce the model of DocT[4],
whose results are listed in the row 2 and row 3 of Table 3. Compared with the
original model, this result achieves an improvements of+0.9 BLEU. The main
difference is that our approach of auto-selection helps the model to filter some
redundant information and focus on the words that are really useful to improve
the quality of document-level MT. But we only implement our method on a
similar model to ours. We will carry out more experiments in the future to
study the universality of our method.

5.5 Analysis

Table 4. Counts of conjunctions

Ref. baseline DocT DocT+AS Ours(online) Ours(offline)

and 3251 2569 2702 3027 3055 3210
but 561 590 587 606 594 590
or 233 183 201 206 186 197
because 285 295 314 316 307 337
so 853 487 497 526 519 563
yet 27 9 2 10 15 12
then 186 98 84 107 161 140

In order to analyze our model’s ability of capturing structured information be-
tween sentences, we list some common conjunctions that can express the rela-
tionship of sentences in Table 4, such as and, but, because. According to the
statistical results, we find that the document-level MT models tend to generate
more conjunctions to capture the structured information. From the comparison
of the statistical results of DocT [4] and online, we can find that the addition of
auto-selection allows DocT [4] to add more related words than the original ver-
sion which is also reflected in the online of our model. According to the results
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of offline, we find that with the addition of future context, offline tends to add
words that express the coordination or causality between sentences.

In order to prove our analysis aforementioned, we list an example in Table 5.
The sentences in the source language express both coordination and causality.
Among the listed models: baseline, DocT, DocT+AS, online and offline, only the
offline model using automatic selection and future context information shows
coordination and causality in translation results, which is helpful to prove the
effectiveness of our methods.

Table 5. Results of baseline and document-level NMT models

Src: 因因因为为为 音乐 可以 帮 他 将 他 的 思维 妄想， 转换 成形 通过 他 的 想象力 和 创造
力 变成 现实
Ref: because music allows him to take his thoughts and delusions and shape them
through his imagination and his creativity , into reality .
Baseline: because music can help him think of his thinking , transform his imagination
through his imagination and creativity .

DocT: because music can help him think of his thoughts , change their imagination
through his imagination and creativity .
DocT+AS: because music can help him think of his mind as a delusion , through his
imagination and creativity .

Ours(online): because music can help him turn his mind into a delusion of his imagi-
nation and his creativity .
Ours(offline): because music can help him think of his delusions , and turn it into his
imagination and his creativity into reality .

6 Conclusion and future work

In this paper, we expand the source of context, and integrate the future context
with the sentence to be translated, which is beneficial to the document-level
NMT. In order to filter redundant information, we study the routing algorithm
in MNMT, and propose a document-level NMT routing algorithm based on this
algorithm. With auto-selection, the model together with the input is capable of
deciding which words to use as context. According to the results of experiments,
our online model achieves +1.39 BLEU improvement compared with the baseline
on TED ZH-EN, which proves the effectiveness of auto-selection in document-
level NMT; Combined with the future context, our model improves the BLEU
by another 0.52 points, which proves that document-level NMT benefits from
future contextual information. In addition, we also transplant our method to
the previous document-level NMT work, which proves the universality of our
method.

We still have a lot of work to do. For example, we do not achieve the expected
results on the EN-DE datasets. These problems have already been mentioned
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above. The lack of other supervision methods and information after the inte-
gration of deep coding are the key points that need to be solved in our future
work. Besides, we will continue to study the universality of our method in other
document-level NMT methods.
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