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Abstract. This paper presents the systems developed by Beijing Jiao-
tong University and Toshiba (China) Co., Ltd. for the CCMT 2021 qual-
ity estimation (QE) and automatic-post editing (APE) task. For QE task,
we mainly rely on mutiple pretrained language models, and propose a
multi-phase pre-finetuning scheme, to adapt the pretrained models to the
target domain and task. The pre-finetuning scheme consists of language-
adaptative finetuning, domain-adaptative finetuning and task-adaptative
finetuning. For APE task, we use BERT-initialized Transformer as the
backbone model, and create different groups of synthetic data by dif-
ferent data augmentation methods, i.e. forward translation, round-trip
translation and multi-source denoising autoencoder. Multi-model ensem-
ble is adopted in both tasks. Experiment results on the development set
show high accuracy on both QE and APE tasks, demonstrating the ef-
fectiveness of our proposed methods.

Keywords: Machine Translation · Quality Estimation · Automatic Post-
Editing.

1 Introduction

This paper presents the systems developed by Beijing Jiaotong University and
Toshiba (China) Co., Ltd. for the CCMT 2021 quality estimation (QE) and
automatic-post editing (APE) task. For QE, we participate in the sentence-
level task of Chinese-English direction. For APE, we participate in the task of
Chinese-English direction.

Machine translation quality estimation aims to evaluate the quality of ma-
chine translation automatically without golden reference [2]. The quality can be
measured with different metrics, such as HTER (Human-targeted Edit Rrror)
[18]. Machine translation automatic post-editing aims to fix recurrent errors
made by a certain decoder given the source sentence, by learning from correc-
tion examples [4]. Both the two tasks serve as a post-processing procedure for
machine translation (MT) and are inner-related.
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Both tasks rely on human-annotated triplets. QE is trained with triplets of src
(source sentence), mt (machine translated sentence) and score (human-assessed
score), and APE is trained with triplets of src, mt and pe (post-edited sentence).
Since both human-assessment and post-editing require professional translators
to manually annotate src-mt pairs, both tasks are highly data-scarce with only
10k-20k training examples. How to train a accurate estimator or post-editor with
limited data remains a challenge.

For QE task, our system mainly relies on multiple pretrained models, in-
cluding four multilingual pretrained models, i.e. multilingual BERT [8], XLM
[6], XLM-RoBERTa-base and XLM-RoBERTa-large [5], and one monolingual
model, i.e. RoBERTa [16]. We propose a multi-phase pre-finetuning scheme, to
adapt the pretrained model to the target domain and task. The pre-finetuning
procedure includes language-adaptative finetuning (LAF), domain-adaptative
finetuning (DAF) and task-adaptative finetuning (TAF). We also jointly train
the sentence-level estimator with word-level QE task. Different models are en-
sembled to achieve further improvement.

For APE task, we choose BERT-initialized Transformer [7] as the back-bone
model, which uses the pretrained BERT to initialize the parameters of both
encoder and decoder. We create synthetic triplets from openly-available parallel
data using different methods, i.e. forward translation [17], round-trip translation
[12] and multi-source denoising autoencoder. We build the multi-source denoising
autoencoder to restore the corrupted reference given the source text, and the
restored reference is deemed as the synthetic mt. We apply domain-selection to
the parallel data for creating synthetic data, and different models trained with
different data are ensembled to achieve further improvement.

Experiments on the development set shows we obtain competitive results in
both directions, verifying the effectiveness of our proposed method.

2 Chinese-English Sentence-level Quality Estimation

2.1 Model Description

Given the data-scarcity nature of QE, we build our system based on multiple
pretrained models. We mainly rely on four multilingual pretrained models, i.e.
multilingual BERT (abbreviated as mBERT) [8], XLM [6], XLM-RoBERTa-
base (abbreviated as XLM-R-base) and XLM-RoBERTa-large (abbreviated as
XLM-R-large) [5]. All of these four models are based on multi-layer Transformer
[22] architecture, and are pretrained on massive multilingual text with shared
multilingual vocabulary, enabling them to transfer to downstream tasks with
limited training data.

We concatenate src (source sentence) and mt (machine translated sentence)
following the way pre-trained models treat sentence pairs, and then feed the
sentence pair to the model. We try two different strategies to aggregate the
sentence-level representation, the first one is to directly use the first hidden
representation of the pretrained model, and the second one is to add a layer of



BJTU-Toshiba’s Submission to CCMT 2021 QE and APE task 3

RNN on the top of the model, to better leverage the global context information,
as shown in Figure 1.

Fig. 1. Pretrained model for quality estimation with joint training. [CLS], [SEP]
are predefined segment separators, and could be different in different models. The
component circled with dashed line is alternative.

Although we mainly focus on sentence-level QE, the sentence and word-level
QE are highly related, since their quality annotations are commonly based on
the HTER measure [14]. During the calculation of sentence-level HTER score,
the word-level QE tag for each word in mt could also be derived, and can serve
as a supplementary information for training. Therefore, we implement multi-
task learning, jointly train the sentence and word-level estimator together. The
word-level estimation is based on the output logit according to each word, and
we only use the logit of the first sub-token if one word is segmented into multiple
sub-tokens. The loss function of both levels are defined as follow:

Lword =
∑
s∈D

∑
x∈s

−(pok log pok + λpbad log pbad),

Lsent =
∑
s∈D

‖ sigmoid(h(s))− hters ‖,

where s and x denote each sentence and word in the dataset D, and h(s)
is the hidden representation, and λ is a hyper parameter. Notice the quality
of mt is very high [19], which means most of word-level tags are OK. To force
the model to pay more attention to the erroneously translated words, we assign
a weight λ for BAD words when calculating word-level loss. The loss of both
sentence and word level are combined and back-propagated together, defined as
follow:

Ljoint =
∑
s∈D

(Lsent + η
∑
x∈s

Lword),
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where η is a coefficient to balance the word-level and sentence-level loss.
Since the linear transformation for different levels are implemented on different
positions, we can perform multi-task training and inference naturally without
any structure adjustment. During the joint-training procedure, the word-level
tags can provide fine-grained information for sentence-level QE.

Table 1. Results on the development and test sets of CCMT 2021 Chinese-English
sentense-leve QE with different pretrained models. We do not apply joint training for
XLM-R-large due to time limitation, and the result on dev set for XLM-R-large is very
low because we set the max length very short in training.

Model Method
Dev Set Test Set

Pearson Spearman Pearson Spearman

mBERT
w/o joint train 0.5783 0.4768 0.5460 0.4748

w/ joint train 0.5403↓ 0.4339 0.5353↓ 0.4254

XLM
w/o joint train 0.5464 0.4627 0.5368 0.4668

w/ joint train 0.5388↓ 0.4647 0.5335↓ 0.4601

XLM-R-base
w/o joint train 0.5445 0.5077 0.4887 0.4443

w/ joint train 0.5371↓ 0.5143 0.4816↓ 0.4388

XLM-R-large w/o joint train 0.3643 0.3312 0.4736 0.4510

However, as shown in Table 1, joint training leads to degradation in all direc-
tions. This is not consistent with previous works which also apply joint training
[15, 11]. In the end, we decide to keep all the models for ensemble.

2.2 Multi-phase Pre-finetuning

Fine-tuning pre-trained language models on domain-relevant unlabeled data
have become a common strategy to adapt the pretrained parameters to down-
stream tasks [9]. Previous works also demonstrate the necessity of pre-finetuning
when performing QE on pretrained models [15, 10]. In our system, we propose
a multi-phase pre-finetuning scheme, consisting of language-adaptative finetun-
ing (LAF), domain-adaptative finetuning (DAF), and task-adaptative finetuning
(TAF). We pre-finetune the pretrained model on unsupervised parallel data with
no quality annotations, by continuing performing mask language modeling.

LAF aims to adapt the pretrained model to bilingual concatenated pairs. De-
spite the shared multilingual vocabulary and training data, mBERT and XLM-R
are originally monolingually trained, treating the input as either being from one
language or another. But in our scenario, the input sentence pair is the concate-
nation of a bilingual parallel pair from two different languages. Therefore, we
continue the mask language model on massive parallel sentence pairs.
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Table 2. Results on the development and test sets of CCMT 2021 Chinese-English
sentense-leve QE. We do not apply LAF to XLM-R-large due to limited computation
resource, and the result on dev set for XLM-R-large is very low because we set the max
length very short in training.

Model Method
Dev Set Test Set

Pearson Spearman Pearson Spearman

mBERT

original 0.5783 0.4768 0.5460 0.4748

+ LAF 0.5875 0.4851 0.5547 0.4824

+ DAF 0.5933 0.4924 0.5589 0.4859

+ TAF 0.5995 0.5028 0.5647 0.4910

XLM
original 0.5464 0.4627 0.5368 0.4668

+DAF 0.5915 0.5065 0.5811 0.5053

+TAF 0.5942 0.5304 0.5838 0.5077

XLM-R-base

original 0.5445 0.5077 0.4887 0.4443

+LAF 0.5699 0.5164 0.5110 0.4555

+DAF 0.5754 0.5170 0.5159 0.4599

+TAF 0.5716 0.5265 0.5103 0.4639

XLM-R-large
original 0.3643 0.3312 0.4736 0.4510

+DAF 0.3296 0.2996 0.5237 0.4961

+TAF 0.2941 0.2674 0.5379 0.5090

We use the parallel data from CCMT 2021 Chinese-English translation task,
which contains roughly 9 million sentence pairs. We filter the data according to
length and length ratio, and only keep sentence pairs with length shorter than
60, since we are unable to pre-finetune the pretrained model with max len too
big. The remaining 6 million pairs are used for LAF, which takes us roughly 10
days on two GPUs.

On the contrary, XLM is pretrained with the task of Translation Language
Modeling, therefore we believe it is already adapted to bilingual concatenated
sentence pair. Since LAF is performed on massive data with high computation
overhead, we decide not to perform LAF on XLM.

DAF aims to adapt the pretrained model to the target domain. The represen-
tation of pretrained model is learned from the combination of various domains,
and can be adapted to a certain domain if continued finetuning on unlabeled
data from the domain. To this end, we select a domain-similar subset of the
parallel data, and perform DAF for all the four pretrained models.

To be more specific, we finetune BERT as the domain classifier. The sentence
pairs in the training and development set are deemed as in-domain data, and
we randomly sample the same size of data as the general-domain data, for the
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training of classifier. We keep roughly 100k domain-similar sentence pairs for
DAF, which takes us up to 3-4 hours on a single GPU.

TAF refers to pre-finetuning on the unlabeled training set for the given task.
It uses a far smaller corpus (10k pairs) compared to DAF, but the data is much
more task-relevant. We apply TAF for all the four models, and it is very fast
with no more than 1 hour on a single GPU.

The three-phase finetuninig scheme is performed in a pipelined manner,
namely the latter phase is performed based on the parameters of the former
phase. The representation of the pretrained model is adapted to our target lan-
guage, domain and task, and can serve as a better start point to be finetuned
on downstream task. Despite the limited tranining data, parallel data is readily
accessible, therefore multi-phase finetuning is a convenient yet effective method
to improve the performance without extra annotation.

2.3 Partial-input Estimation

As denoted by Sun [20], QE systems trained on partial inputs perform as well as
systems trained on the full input. Although the alignment information is absent,
estimation can still be performed solely on the source text (to estimate the
complexity) or solely on the target text (to estimate the fluency). This enables
the incorporation of powerful monolingual models.

In our system, we perform partial-input estimation on the target side. We
utilize the monolingual models of BERT and RoBERTa [16] to estimate the flu-
ency. Only the target side of the bilingual pair is fed for training and evaluation.
Despite the absence of the source text, the partial-input estimation still achieve
high correlation because of the introduction of powerful monolingual model.

We also perform DAF and TAF to the monolingual model to adapt it to our
scenario, as shown in Table 3.

Table 3. Results on the development and test sets of CCMT 2021 Chinese-English
sentense-leve QE with partial-input.

Model Method
Dev Set Test Set

Pearson Spearman Pearson Spearman

BERT-base original 0.5127 0.4652 0.4595 0.4177

RoBERTa-base original 0.5471 0.4656 0.4707 0.4279

RoBERTa-large
original 0.5684 0.5133 0.4785 0.4350

+DAF 0.5715 0.5407 0.4903 0.4457

+TAF 0.5712 0.5063 0.4834 0.4395



BJTU-Toshiba’s Submission to CCMT 2021 QE and APE task 7

2.4 Model Ensemble

After exhaustive hyper-parameter searching, we obtain more than ten strong
models with different architectures and training procedures. To combine differ-
ent predictions and achieve further improvement, we try two model ensemble
techniques, namely averaging and linear regression. Averaging simply averages
the predicted logits of different models. Linear regression learns a linear combi-
nation of different predictions using l2-regularized regression over the dev set.

Table 4. Results on the development and test sets of CCMT 2021 Chinese-English
sentense-leve QE. The results of single models are inconsistent with previous sections
due to our final hyper-parameter searching.

Model
Dev Set Test Set

Pearson Pearson

mBERT 0.6125 0.5581
XLM 0.6055 0.5800

XLM-R-base 0.5974 0.5454
XLM-R-large 0.2941 0.5379

RoBERTa 0.5681 0.4903

averaging 0.6291 0.6043
linear regression 0.6376 0.6034

As shown in 4, both two ensemble techniques achieve considerable improve-
ment. Although the result of partial-input is comparatively low, it can provide
complimentary information for other bilingual models when doing ensemble.
Therefore, the incorporation of partial-input estimation is necessary.

3 Chinese-English Automatic Post-Editing

3.1 BERT-initialized Transformer

The current state of the art in APE is based on encoder-decoder structure with
Transformer [22] as the backbone network. To alleviate the data-scarcity prob-
lem, we follow [7] and use multilingual BERT to initialize the parameters of
Transformers, as shown in Figure 2, which we call BERT-initialized Transformer.
We follow their default setting, namely use the self-attention in BERT to initial-
ize both the encoder and the decoder.

Specifically, instead of using multiple encoders to separately encode src and
mt, we use BERT pre-training scheme, where the two strings after being con-
catenated by the [SEP] special symbol are fed to the single encoder, and assign
different segment embeddings to each of them. Both the self-attention and con-
text attention of the decoder are initialized with BERT. The self-attention and
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Fig. 2. BERT-initialized Transformer. Dashed lines show shared parameters.

embedding between encoder and decoder are shared, to reduce parameter size
and improve training efficiency.

We also compare with the dual-source transformer architecture of [13] and
multi-source Transformer architecture of [21]. With 10k training triplets com-
bined with 2 million synthetic triplets, the BERT-based Transformer outper-
forms the previous methods by a large margin, showing the effectiveness of pre-
trained parameters in APE task.

3.2 Domain Selection

Firstly we believe generative task is data-hungry, and therefore we use all the
available parallel data to create synthetic triplets. We use the parallel data pro-
vided by CCMT 2021 Chinese-English translation, which consists of 23 million
sentence pairs after filtering. However, during training we find that the model
converges very soon and can not be improved afterwards. Therefore, we decide
to apply domain selection for the synthetic data.
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Table 5. Results on the development set of CCMT 2021 Chinese-English APE with
different architectures.

Model Data
Dev Set

TER BLEU

Dual-source Transformer [13] 2 million 0.4585 41.74
Multi-source Transformer [21] 2 million 0.4344 46.39
BERT-based Transformer [7] 2 million 0.4140 46.58

Table 6. Results on the development set of CCMT 2021 Chinese-English APE with
different size of synthetic data. 10k refers to the model trained only with real data.

Model Data
Dev Set

TER BLEU

BERT-based Transformer 10k 0.4234 45.92

BERT-based Transformer 23 million 0.4679 39.57
BERT-based Transformer 5 million 0.4276 44.62
BERT-based Transformer 1 million 0.4089 47.80
BERT-based Transformer 200k 0.4011 48.86

To perform domain classification, we use the 10k training triplets as in-
domain data, and randomly sample the same size of general domain data. We
try two domain classification methods, [1] finetune BERT as a binary classifier,
[2] use bilingual cross-entropy filtering method [1], and we use kenlm3 to train
4-gram language models for filtering. Then synthetic triplets are combined with
real triplets (which is oversampled 20 times) for training.

However, we do not see a clear difference between the two domain selection
methods. On the contrary, we find that data size matters a lot. As shown in
Table 6, we get the best result when incorporating 200k data. More data leads to
domain irrelevance while only using the 10k real data is not enough for training.
Therefore, we adopt the same data size in the following experiments.

3.3 Data Augmentation Techniques

Data augmentation is a de-facto paradigm for APE task [3]. The creation of
synthetic data requires to generate synthetic mt given the parallel data (which
are deemed as synthetic src and pe). Previous works rely on translation model to
generate synthetic mt [12, 17], but the connection between sythetic mt-pe is not
consistent with real mt-pe. Actually, most synthetic mts generated by machine
translation are a correct translation of src but with different syntactic structure
from pe. Forcing the APE model to transform the syntax of a correct translation
is of little help to the training objective.

3 https://kheafield.com/code/kenlm/
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Fig. 3. Multi-source denoising autoencoder for generating synthetic triplets.

In this work, we propose to generate synthetic mt via Multi-source Denoising
Autoencoder (MDA), to better simulate the real error distribution. Denoising
autoencoder is trained with two steps: (1) corrupt the text with an arbitrary
noising function, and (2) learn a sequence-to-sequence model to reconstruct the
original text. Specifically, in our scenario, we provide both the corrupted text and
its corresponding translation to the encoder, leading to a multi-source denoising
autoencoder structure, as shown in Figure 3. The MDA learns to reconstruct
the text based on its corruption and correspongding translation. This procedure
is performed on massive publicly-available parallel sentence pairs (which are
denoted as src and ref ), without the need of extra annotations.

After that, the MDA can be used to generate synthetic triplets following
the same formula. To be concrete, given parallel src-ref pairs, we would corrupt
the ref by the same noising function, which is combined with src to generate
reconstruction via MDA. Then the original and reconstructed ref s are deemed
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as pe and mt, respectively. The generated mt would inevitably differ pe (due to
the corruption-reconstruction procedure), but their connection would be close
since mt is inferred directly from pe. An also because the existence of source
text, the restored mt would be not semantically far from the src. This is a better
simulation of the MT error distribution.

Specifically, we try the combination of three noising transformations, i.e. word
omission, word replacement and word permutation. Word omission randomly
omits words in a sequence, and word replacement randomly replaces words, and
word permutation randomly permutes words with a maximum distance. We use
the 23 million CCMT 2021 Chinese-English data, and adopt two-fold jackknifing,
namely split the data into two folds, one for training and another for decoding.

However, during the experiment, we find that if the corruption on the target
side is too heavy, then the model would ignore the corrupted pe and only attend
to the src. In that case, our multi-source denoising autoencoder would degrade
to a normal machine translation model. Therefore, we try two strategies to force
the model to attend to the corrupted target text.

[1] Corrupt the source text with similar flavor;

[2] Disturbing the embedding of the source text with Gaussian noise.

Both strategies make it difficult for the autoencoder to generate reference
only relying on src, since the information of source side is also corrupted now.
Therefore, it will try to restore the target sentence by both reorganising the
corrupted pe and translating the disturbed src, leading to semantically deviated
(but not unrelated), and syntactically consistent mt.

We also follow previous works and adopt forward translation and round-trip
translation to create synthetic data. Forward translation [17] uses a forward-
translation model to translate src to the target language as mt. Round-trip
translation [12] uses two translation models, to translate pe firstly to the source
language then to the target language, to generate synthetic mt. All the transla-
tion models are trained with the 23 million data with two-fold jackknifing.

Table 7. Results on the development set of CCMT 2021 Chinese-English APE with
different augmentation methods. 200k synthetic triplets is combined with 10k real
triplets oversampled 20 times.

Method
Noising Dev Set

source reference TER BLEU

MDA
Gaussian Corruption 0.4016 48.44

Corruption Corruption 0.4023 48.41
None Corruption 0.4035 48.39

forward translation - - 0.4039 48.41

round-trip translation - - 0.4011 48.86

Ensemble - - 0.3953 49.20
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Although the MDA-based method does not outperform the round-trip trans-
lation based method, different methods lead to different data distributions and
can provide complimentary information for each other. Therefore, we use all the
models for ensemble, and achieve further improvement, as shown in Table 7.

4 Conclusion

In this paper, we described our submission in CCMT 2021 quality estimation
and automatic post-editing task. For QE task, we verify that the pretrained
models can be further improved on target language and target domain via pre-
finetuning, and incorporate powerful monolingual model to perform partial-input
estimation. For APE task, we find that data-scarcity is alleviated to a large
extent if use pretrained model to initialize the encoder-decoder, and propose to
use multi-source denoising autoencoder to generate synthetic triplets.

Due to time limitation, we only participate in the Chinese-English direction.
In the future, we will extend our system to QE and APE tasks on other lan-
guages, to verify the effectiveness of our proposed methods. Besides, we will also
investigate how to combine these two inner-related tasks together to achieve
further improvement.
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