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Abstract. Non-autoregressive neural machine translation is gradually
becoming a research hotspot due to its advantages of fast decoding. How-
ever, the increase of decoding speed is often accompanied by the loss of
model performance. The main reason is that the target language infor-
mation obtained at the decoder side is insufficient, and the mandatory
parallel decoding leads to a large number of mistranslation and missing
translation problems. In order to solve the problem of insufficient target
language information, this paper proposes a dynamic mask curriculum
learning approach to provide target side language information to the
model. The target side self-attention layer is added in the pre-training
phase to capture the target side information and adjust the amount of
information input at any time by way of curriculum learning. The fine-
tuning and inference phases disable the module in the same way as the
normal NAT model. In this paper, we experiment on two translation
datasets of WMT16, and the BLEU improvement reaches 4.4 without
speed reduction.
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1 Introduction

Neural machine translation (NMT)[1,2,3] has become a popular direction of
research and has achieved great results. However, the mainstream autoregressive
neural machine translation (AT) models have high decoding latency and exist
in exposure bias[4]. Therefore, Gu et al.[5] proposed non-autoregressive neural
machine translation (NAT), which uses parallel decoding to generate all tokens at
once and improves the decoding speed significantly. However, this method can’t
obtain enough contextual information for the model to learn, and the generated
translations suffer from a large number of mistranslation, missing translation
and multi-modality problems.
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Ding et al.[6] proposed that there are differences between the distillation data
and the raw data, and simply using distillation data in one direction will result
in poor translation of low-frequency words. Therefore, adding the knowledge
distillation data in the opposite direction, which utilizes the target side data and
solves the low-frequency word problem, but generating distillation data using
only the target side data does not allow the decoder to obtain more information
on the target side. Ran et al.[7]proposed that the decoding stage makes use of
reordering information. Reorder the source copy token so that the position of
each token is aligned with the target language token. Although makes use of
word alignment information at the target side, but semantic information is not
sufficiently obtained. Guo et al.[8] proposed fine-tuning by curriculum learning
(FCL-NAT), which transfers the knowledge learned from the AT model to the
NAT model by way of curriculum learning. However, this approach requires
training the AT model first and then fine-tuning it using curriculum learning.
This approach greatly increases the training time and consumes a lot of resources.

Obtain more linguistic information at the target side, some researchers have
proposed a semi-autoregressive model with multiple iterations of decoding. There-
fore, Gu et al.[9] proposed Levenshtein Transformer (LevT), which modifies the
translation by three operations: delete, insert, and replace placeholders. More
contextual information can be obtained during the translation adjustment pro-
cess. The mask prediction method proposed by Ghazvininejad et al.[10] replaces
a token with a lower probability with a mask and re-predicts it after each gen-
eration. It stops after two iterations unchanged or after reaching the maximum
number of iterations. Although the above method can provide enough target side
information for the model by multiple iterations, the increase in the number of
iterations is accompanied by a decrease in the decoding speed, which can even
degrade to the autoregressive model level and lose the advantage of NAT. Qian
et al.[11] proposed GLAT, which uses the token of partial ground truth trans-
lation to replace the source copy token, and the model obtained by training in
this way can achieve better performance. It is illustrated that, the performance
of the model can be improved without losing speed by incorporating more target
side information based on the model decoded in a single iteration.

In this paper, we propose a dynamic mask method based on curriculum
learning (DMCL) to generate ground truth translations with mask for model
training, so that the decoder can obtain more linguistic information on the tar-
get side. Specifically, the number of masks for the ground truth translations
is dynamically increased in each training phase by means of curriculum learn-
ing, and the ground truth translations with mask are input to the decoder side.
The target self-attention layer is added at the decoder side to obtain the tar-
get language information and fuse it with the self-attention layer information.
The target language information provided can be limited by the mask ground
truth token to prevent relying too much on the target self-attention part in the
training phase. The number of masks is dynamically adjusted using a curriculum
learning approach so that the model can be trained from easy to difficult, and
the training process is smoother and achieves better model performance. In the
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fine-tuning phase, the target self-attention is removed, and the model is identical
to the common NAT model. The experimental results show that the maximum
improvement of BLEU value is more than 4.4 without losing decoding speed. It
is noted that the DMCL approach in this paper is also applicable to the model
with multiple iterations of decoding.

2 Background

2.1 Non-autoregressive neural machine translation

The non-autoregressive model is based on the hypothesis that all words in the
target language are independent of each other, and generates all target language
words in parallel[5]. The generation process can be expressed as follows:

P (y|x) = P (Ty|x)

Ty∏
t=1

P (yt|x, z) (1)

where Ty denotes the length of the target sentence, x denotes the source language
sentence, and y denotes the target language sentence. From the Equation (1), it
can be seen that although the hidden variable of z is involved in the decoding
stage, the latent variables are also derived from the source side language. There-
fore, this approach does not fully utilize the target side language information
in the training phase, but forcibly decodes the translation based on the latent
variables. In contrast, the DMCL proposed in this paper can provide part of the
target side information in the pre-training stage, so that the model learns richer
target side information.

2.2 Curriculum Learning

Curriculum learning is a strategy to train a model from easy to difficult. This
asymptotic training approach allows the model to be smoother during the train-
ing phase while achieving better results. Platanios et al.[12] proposed a new
training framework that decides the next phase of input to the model based
on the difficulty of the training data and the current model capabilities. There
are two important metrics under this training framework, data difficulty and
model competence. The data difficulty can be calculated based on the sentence
length or the average word occurrence probability. The model competence uses
a predefined incremental function. The input data difficulty at each stage is less
than the current model competence. In this paper, the same idea is adopted,
and DMCL determines the amount of target side language information provided
in the next step based on the current status of the model. The DMCL strategy
adjusts the amount of target side language information provided to enable the
model to achieve better results compared to the strategy that doesn’t use the
course learning approach.
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3 Method

In this section, a detailed description of the model structure of DMCL-NAT and
the dynamic mask curriculum learning training strategy will be illustrated.
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Fig. 1. The model structure of DMCL-NAT. Where trgt-self-attention is added to this
paper. Residual connectivity is dispensed with in the figure.

3.1 Model

The encoder side of the model is identical to the Transformer’s encoder, and
the fertility predictor is added to the encoder side to predict the target sentence
length. DMCL -NAT adds language information on the target side mainly at the
decoder side. It also gradually reduces the amount of incorporated information in
a curriculum learning manner, thus achieving an easy-to-hard training strategy.
Firstly, the symbolic representation is defined, and the source language token
sequence is denoted as X = {x1, x2, x3, ..., xn}, and the target language token
sequence is denoted as Y = {y1, y2, y3, ..., yT }. The main structure of the model
is shown in Figure 1. The input to the decoder side has two parts, one part of
the copy from the source language according to the fertility predictor denoted as
X∗ = {x1, x2, x2...xT }, and the other part replaces the token in the ground truth
translation with the mask according to the mask ratio. The input is the mask
target token denoted as Y ∗ = {y1, y2, [MASK], [MASK], ...yT }. The DMCL
strategy will be described in detail on the next section. The two part inputs are
embedding and their respective self-attention modules:

Hself−attn = MultiHead(Emb(x∗), Emb(x∗), Emb(x∗)) (2)
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Htart−self−attn = MultiHead(Emb(y∗), Emb(y∗), Emb(y∗)) (3)

where Emb(·) denotes the word embedding. After obtaining the self-attention
results of the two parts, the two parts are fused and expressed as:

H = 0.5 ∗ (Hself−attn + Htart−self−attn) (4)

where H is the result of the fusion of the two parts of the self-attention. In
the model fine-tuning and inference phase then the target self-attention layer is
disabled, returning to the original structure of the NAT model.

3.2 Dynamic Mask Curriculum Learning

Due to the feature of parallel decoding of NAT model, if all the target language
information is directly introduced at the decoder side, the model will completely
rely on the target self-attention part in the training phase, and the originally
self attention part can’t be adequately trained, resulting in the model losing the
ability to generate translations after the target self-attention is removed in the
inference phase. Therefore, it is necessary to limit the amount of information
provided in the target language.

Inspired by BERT[13], Replace some words in the target sentence with mask
tokens. To prevent the problem of over-fitting and not decoding properly, the
mask ratio should be more than 50%.Therefore, this paper adopts the curriculum
learning method to dynamically adjust the proportion of tokens in mask, and
its value range should be [0.5, 1].

The mind of curriculum learning is to let the model train from easy to dif-
ficult. When the mask is less, more contextual semantic information can be
provided to the model, and as the mask ratio keeps increasing, the ground truth
translation information that the model can refer to keeps decreasing. Therefore,
the adjustment function for the mask ratio should be an increasing function
overall. Platanios et al.[12] proposed a function taking values between 0 and 1
and increasing with the number of training steps:

ratio(t) = min(1, p

√
t

T
(1− cp0) + cp0) (5)

where c0 is the starting value, t is the current number of training steps, and T is
the total number of curriculum learning steps. When p = 1, it is a linear increas-
ing function, and when p = 2, ratio(t) increases gradually less as t increases.
From the existing course learning experience, generally p = 2 works best.

However, this way of taking values still has drawbacks. The main reason is
that the mask ratio cannot be adjusted in time for different training conditions
and can only be trained in a predefined way. Therefore, dynamically adjusting
the mask ratio according to the current training condition of the model can
make the model achieve better results. Therefore, this paper proposes a dynamic
adjustment strategy that follows the change of last step loss. The equation is as
follows:

ratio(loss) = min(1,
2

√
lossmin

loss
(1− c20) + c20) (6)
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where loss denotes the loss obtained by the model for the previous stage of
calculation, and lossmin denotes the loss when the autoregressive model reaches
the convergence state, c0 is the minimum mask ratio. As can be seen from the
Equation (6), as the loss decreases indicates that the current model can reach
a better learning state, so the mask ratio can be increased appropriately, and
when the loss increases during the training process indicates that the current
stage is difficult to train, the mask ratio can be reduced appropriately.

3.3 Train and Inference

Train: The model is divided into pre-training and fine-tuning phases during
training. The pre-training process is shown in Figure 2. In the pre-training phase,
which can also be called the mask curriculum learning phase, the mask ratio is
dynamically adjusted according to the current training status of the model, and
some of the target side language information is added so that the model can
learn more target side language information.Can be expressed as:

P (y|x, y∗) = P (Ty|x)

Ty∏
t=1

P (yt|x, y∗, z) (7)

where y∗ denotes the ground truth translation with mask token and Ty denotes
the target sentence length.However, due to the existence of target self-attention
there is still the problem of partial information leakage. Therefore, the fine-
tuning phase removes target self-attention completely and doesn’t introduce the
ground truth translation information. The fine-tuning process can be expressed
as Equation (1).

Inference: The method in this paper only modifies the model structure in the
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Target token
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Fig. 2. Dynamic mask curriculum
learning process.The shaded area in-
dicates the token that was masked

training phase, and the fine-tuned model
no longer relies on the target side informa-
tion provided by target self-attention.The
inference stage is the same as in Equa-
tion (1). The sentence length is obtained
according to the fertility prediction and the
decoder needs the latent variable z copied
from the source language. In addition, this
paper also uses the noise parallel decoding
(NPD)[5] method to generate the transla-
tion, the candidate set is increased accord-
ing to the sentence length in the inference
stage, and then the optimal result is se-
lected from all the candidate sets as the
final translation, which can make a better
decision on the sentence length. Therefore,
the inference stage is the same as the or-
dinary NAT model, and the model perfor-
mance is further improved without affect-
ing the decoding speed.
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4 Experiment

4.1 Data Preparation

In this paper, experiments were conducted on two sets of language pairs. The
WMT16 RO-EN dataset is v6 version containing a total of 220K sentence pairs.
For the WMT16 EN-DE dataset (2M sentence pairs), 1M sentence pairs were
selected as the training set. On the RO-EN and EN-DE tasks, all the corpus was
preprocessed by Byte Pair Encoding(BPE)[14], and the BPE dictionary size was
set to 32K for both.

4.2 Configuration

For all the above datasets, the experimental model configurations all follow the
settings of Vaswani et al.[2]. The decoder and encoder were each set to n-layers=6
, where the attention module d-model=512,n-heads=8. The warm-up steps were
all set to 4000. The learning rate was set to 0.0005, and the learning rate update
followed the inverse square root annealing algorithm. For the RO-EN dataset, a
total of 6W steps are trained, and for the EN-DE dataset, a total of 30W steps
are trained, where the DMCL pre-training are set to half of the total training
steps.

4.3 Baseline

The experimental baseline in this paper is derived from the autoregressive model,
the non-autoregressive model with single decoding, and the semi-autoregressive
model with multiple iterations of decoding.

Transformer[2]: Autoregressive model strong baseline.
NAT[5]: The NAT model proposed by Gu et al. assumes parallel decoding

with individual tokens directly independent of each other.
Mask Predict[10]: The token with lower probability in each generated trans-

lation is replaced with mask and re-predicted. The final translation is generated
after several iterations.

All the above baseline and methods in this paper are implemented based on
fairseq[15]. Choose the BLEU[16] value to evaluate the model performance.

4.4 Results

The main results of the experiments are shown in Table 1. The DMLM approach
can significantly improve the performance of the NAT model. Compared with
the multiple iteratives decoding model, the method in this paper retains the
original fast decoding advantage of the NAT model and significantly reduces the
performance difference with the multiple iteratives decoding model. Compared
with the vanilla NAT model, significant improvements are obtained on the RO-
EN dataset, with a maximum performance gain of more than 4.4. In addition,
great potential is shown on large corpora of millions.
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Table 1. Results on the WMT16 RO-EN and EN-DE benchmarks. m denotes the noise
parallel decoding window size. DMCL-NAT is the method proposed in this paper. The
bolded results indicate the best performance of single decoding.

Models
WMT2016

Speedup
RO-EN EN-RO EN-DE

AT Model Transformer 36.64 34.65 22.13 1.0×

Iterative NAT Mask-Predict(iter=10) 35.22 32.96 18.43 2.6×

Fully NAT
NAT 26.46 25.32 12.56 15.7×

NAT(m=5) 28.83 27.07 12.92 7.6×

Ours
DMCL-NAT 30.47 28.81 14.74 15.7×

DMCL-NAT(m=5) 33.27 31.76 15.44 7.6×

In this paper, only the target self-attention layer is added to the pre-training
process of the model, and the amount of target language information input is
adjusted by adjusting the number of masks in the input ground truth translation.
Therefore the method can be applied to a variety of NAT models.

5 Analysis

5.1 Mask Strategy

Table 2. Performance on
WMT16 RO-EN with fixed
mask ratio.

Mask ratio BLEU
0.5 29.78
0.6 29.91
0.7 30.00
0.8 29.57
0.9 28.36

ours 30.47

In this paper, two points of view are evaluated
to verify the effectiveness of DMCL. Firstly, the
mask ratio is fixed to a certain value. In addition,
a strategy of mask ratio adjustment with the idea
of curriculum learning is adopted, which gradually
increases from 0.5 to 1. There are four incremental
functions set in Table 3.

The experimental results are shown in Table 2
and Table 3. The optimal performance is reached
when the fixed mask ratio is 0.7. When the in-
cremental function is used, the inverse quadratic
incremental function achieves the maximum value
and is stronger than the model performance when
the ratio is fixed. But this DMCL strategy pro-
posed in this paper obtains a significantly better
model performance than all the above approaches.
The main reason is that dynamically adjusting the amount of information input
allows the model to obtain the most appropriate amount of information and
achieve better training results. So the DMCL strategy proposed in this paper is
effective.
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Table 3. Performances on WMT16 RO-EN with incremental mask ratio.

Functions Description BLEU

Linear t
T

(1− c0) + c0 29.85

Sqrt 2

√
t
T

(1− c20) + c20 30.23

Exponent e−log t
T

(1−c0)+c0 29.72

Ladder-like b 5∗t
T
c ∗ 0.1 + c0 29.82

ours 30.47

Table 4. Performance on WMT16 RO-EN when DMCL applied to Mask Predict.

Model BLEU

Transformer 36.64

Mask Predict(iter=10) 35.22

Mask Predict+DMLM(iter=10) 35.87

5.2 Method Generality

Since the method in this paper is to add target self-attention at the decoder side
and then pre-train the model by DMCL. So the method is also applicable to the
non-autoregressive translation model with multiple iterations of decoding. To
test this hypothesis, the multiple iterations decoding model Mask Predict was
chosen as the base model and experiments were conducted on the RO-EN task.
The experimental results are shown in the Table 4 ,after adding the method of
this paper to Mask Predict, the BLEU value has improved by 0.65. The reason
why the improvement is not as large as that of the model with single decoding
is that DMCL provides linguistic information on the target side in the training
phase, while the same information on the target side is available during the
iteration of Mask Predict. Therefore, the impact of DMCL is weakened.

6 Conclusion

In this paper, we propose a new method that can incorporate the target side
language information in the NAT model, while dynamically adjusting the ratio
of mask substitution in the ground truth translation in a curriculum learning
approach, and controlling the amount of target language information provided
by the ground truth translation can achieve a progressive learning process from
easy to difficult. The method significantly improves the performance of the single
decoding model without speed loss. Also, experiments are conducted in this pa-
per based on the Mask Predict model, and it is demonstrated that the method is
also applicable to models with multiple iterations of decoding. Providing target



10 Yisong Wang, Hongxu Hou et al.

side information at the decoder side can effectively improve NAT model perfor-
mance, and future research will focus on exploring more appropriate curriculum
learning strategies and ways to apply the approach to other generative tasks.
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