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Abstract. kNN-MT has been recently proposed, uses a token-level k-
nearest neighbor approach to retrieve similar sentences, obtaining knowl-
edge guidance from an external memory module, and then combined with
the prediction results of the translation model, which greatly improves
the accuracy of machine translation. However, KNN-MT uses simple lin-
ear interpolation in the fusion of retrieval probability and translation
probability, which can not dynamically adjust the fusion ratio according
to the matching degree of the retrieved sentences. Moreover, different
fusion ratios need to be explored in different translation scenarios, and
the translation effect will be affected when the retrieved sentences have
a low matching degree or contain noise. In this paper, we propose an
approach via Dempster—Shafer theory(DST) to dynamically fuse differ-
ent probability distributions to suit different scenarios. We demonstrate
that our approach is more significantly improved and more robust than
the traditional kNN-MT, and we explore the application of kNN-MT in
low-resource translation scenarios for the first time.
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1 Introduction

Over the past few years, with the development of deep learning, neural machine
translation has come a long way. In order to further improve the translation accu-
racy, more and more researches have started to express the training data as some
kind of external knowledge rather than as model parameters, which is called non-
parametric method. Since this method requires search to obtain external knowl-
edge, it is also called search-based model. The representative methods are as
follows: Nearest neighbor language models (kNN-LM)[I], which introduces kNN
to the language model for the first time and gains tremendous enhancements; k-
nearest-neighbor machine translation (KNN-MT)[2], which extends kNN-LM to
translation model, has made a qualitative leap in bilingual translation, multilin-
gual translation, and especially domain adaptation translation tasks compared
with traditional methods; As well as Adaptive kNN-MT implemented by [3] on
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this basis, a meta-k network is trained by artificially constructing features for
generating the number of nearest neighbors k, instead of artificially specifying
them; And Fast kNN-MT [4] introduces hierarchical retrieval to improve the
retrieval efficiency thus improving the slow translation speed of KNN-MT.

ENN-MT bulids an external memory module on top of the ordinary NMT,
storing the context representation of the corresponding sentence as well as the
target word. The idea of KNN-MT is to retrieve sentences similar to the current
sentence in the memory module when translating the current word, and get
reference and guidance from the translation memory by the words corresponding
to the similar sentences. Then it is fused with the translation result of NMT to
get the final result.

Although KNN-MT has demonstrated its powerful capability in high-resource
languages as well as domain adaptation, there are still two problems. On the one
hand, kNN-MT has not been studied in low-resource scenarios due to its par-
ticular reliance on the representational power of pre-trained translation models
and the retrieval effect of similar sentences. On the other hand, in the fusion
of NMT with an external memory module, the fusion ratio is controlled by a
hyperparameter A, i.e., how much information the NMT model obtains from the
external memory module. However, it poses some problems, due to the long-tail
effect of the dataset, some sentences have more similar sentences while some
sentences have less similar sentences. Using the same fusion ratio for all data
will cause the problem that some sentences do not acquire enough information
and some sentences introduce noise. We illustrate this with a concrete example
in Figll] Moreover, it is experimentally demonstrated that the model translation
results are very sensitive to the selection of hyperparameter A, which affects the
robustness of the model.

DE: die Republikaner im Kongress drangen auf eine umfassendere Neufassung der
Ozonregeln.
EN: Republicans —in — Congress — are — pushing — for — a — broader rewrite
of — the — ozone — rules. - more”
¥ v I
P NMT P Mem

broader 34.3% ew 8.9% more 44.8%

wider 22.4% X epeal 71% = wider 31.8%

larger 7.2% ill 3.7% larger 11.8%

Fig. 1. Example of failure of probability interpolation between pyarr and parem, while
translating DE—EN.

To solve this problem, we propose a dynamic fusion method via Demp-
ster—Shafer theory, which drops the fixed fusion method with linear interpo-
lation, and gives different fusion results for different retrieval probabilities and
translation probabilities. The problem of high confidence in retrieval probability,
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but too low fusion ratio, i.e., better prediction of retrieval probability, but biased
final translation result due to too low fusion ratio, and vice versa, is alleviated.
Moreover, our method improves the robustness of the model to cope with trans-
lation in complex scenarios. More importantly, we explore the application of
ENN-MT in low-resource translation scenarios for the first time, demonstrating
the effectiveness of non-parametric methods in low-resource scenarios. We vali-
date the effectiveness of our methodology for multi-domain datasets, including
IT, Medical, Koran, Law, and the CCMT’19 Mongolian-Chinese low-resource
dataset. Our method obtains an increase of 0.41-1.89 BLUE, and the robustness
of the model is improved.

2 Background

The main approach of KNN-MT involves the building of memory modules and
the fusion of external knowledge with the predicted results of the NMT model.
In terms of memory module construction, unlike [5] and [6] which construct
sentence-level and fragment-level memory datastore, kNN-MT constructs token-
level memory datastore. Its advantage is better retrieval and higher matching,
but the memory module size is the total number of tokens in the target language,
which leads to low retrieval efficiency. In terms of construction method, KNN-MT
selects an offline construction method, therefore a pre-trained model with strong
knowledge representation capability is required. The memory module is stored
as a key-value pair of a context vector and a target token, and is constructed
by feeding the training data into the model in a single forward pass. Given a
bilingual corpus (z,y) € (X,)) the decoder decodes y; based on the source
language = and the words y.; that have been generated. Assuming that the
hidden layer state of the pre-trained model is f (x,y<;), the key of the datastore
is f (x,y<¢) and the value is y;, then the construction process is:

(K:,V) = {<f ($7y<t) 7yt) >vyt €y ‘ (w,y) € (X7y>} (1>

Once the memory module is constructed, the similar sentences can be re-
trieved when decoding, and the token corresponding to the similar sentences
can be used to obtain a retrieval probability, i.e., the retrieval probability pasem
given by the memory module through historical data.

_d(kjvf(xvgl:i—l))) (2>

PMem (Yi | T, §1:-1) o Z Ly,—v, exp <— T

(ki ,U4 GN)

The retrieval probability represent external knowledge guidance, and ANN-
MT fuses the external knowledge with the model knowledge by simple linear
interpolation to obtain the final probability distribution.

W | 2, 91:-1) = Aoyt (Ve | y<t,2) + (1 = X) prrem (Y2 | Y<t) (3)
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3 Method

In this section, we mainly introduce our proposed method, and our method is
mainly applied in the inference stage of the model. We discard linear interpola-
tion and use DST (Dempster-Shafer theory) in the fusion process of pyasr and
PMem, and our method is shown in Figure 2] Since pasen only generates proba-
bilities for a few relevant words of the similar neighbors in the actual calculation
process, and the probabilities of other irrelevant words are all 0, resulting in a
very hard distribution of ppsem, and more 0 probabilities will have a very signif-
icant impact on the DST results, so we use label smoothing for pse.,, to make
the distribution of psepn, smoother.

Y Final predication

!

probability fusion

PNMT PMem

T T

Normalization
T Token, 0.6
represention T T
query

- Token

—_— sea )
-@ x , Token,

X Datastore

input Nearest K Neighbors

I

Fig. 2. Schematic diagram of our approach, the retrieval process occurs at the decoder,
where similar sentences are retrieved in the memory module based on the context
vector. The retrieval probability is obtained by normalizing the target token and then
dynamically fused with the translation probability using the DST algorithm.
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3.1 Dempster—Shafer theory

Dempster-Shafer theory[7] is a generalization of probability theory and a very
effective method for data fusion. DST extends the basic event space in probabil-
ity theory to power sets of basic elements by replacing a single probability value
of a basic element with a probability range. DST is based on the mathematical
theory proposed by Demster and Schaeffer, and is a more general formulation of
Bayesian theory. DST proposes a framework that can be used to represent incom-
plete knowledge and update credibility. If a set is defined as © = {01,605, ...,0x}
and all elements in the set are independent and mutually exclusive, © is called
the frame of discernment framework. Under this premise, the DST combination
rules are provided.

Let m; and ms be the two probability assignment functions on the same
discernment framework. The corresponding focal elements are A4; (i = 1,2, ..., k)
and B; (j =1,2,...,1), respectively, and the new probability assignment (BPA)
functions after the combination is denoted by m. Then the DST combination
rule can be expressed as the following form:

m(¢) =0
m(A) = my(A) ®@ma(A) ﬁ Y om (Ai)mg(Bj) (4)
AH’TBJiA

Dempster-Shafer theory has been widely used to deal with problems with
uncertainty or imprecision. Because it can integrate different algorithms based
on its basic probability assignment framework to improve the reliability of the
results. In this paper, we use evidence theory to execute data fusion for py a7
and Ppsem, Wwhere my in equation @ is pyypr and mo 1S Parem-

3.2 Label Smoothing

Label Smoothing|[g] is a widely used regularization technique in machine transla-
tion. LS penalizes the high confidence in the hard target to introduce noise to the
label and change the hard target into a soft target. The idea of label smoothing
is simple: the token corresponding to the ground truth should not have exclu-
sive access to all probabilities; other tokens should have a chance to be used as
ground truth. In parameter estimation of complex models, it is often necessary
to assign some probabilities to unseen or low-frequency events to ensure the
better generalization ability of the model. For the specific implementation, label
smoothing uses an additional distribution ¢ which is a uniform distribution over
the vocabulary V, i.e., qx = %, where ¢ denotes the kth dimension of the distri-
bution. The distribution of final result is then redefined as a linear interpolation
of y; and ¢:

yr=0-a)-yi+a-q (5)

Here, a denotes a coefficient to control the importance of the distribution g,

and yévs denotes the learning target after using label smoothing. The schematic
diagram is shown in Figure [3
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Fig. 3. Targets with Label Smoothing when a = 0.1.

Label smoothing can also be seen as an adaptation of the loss function with
the introduction of additional prior knowledge (i.e., the part related to ¢). But
this prior knowledge is not fused with the original loss function by means of
linear interpolation.

The process of generating the final probability can be summarized by the
following procedure, where the LS denotes a label smoothing, DST denotes
Dempster-Shafer theory, pasen denotes the retrieval probability obtained from
the memory module, and pyr denotes the translation probability of the NMT
model.

P (Yt | y<t) = DST (pnyr, LS (Prrem)) (6)

4 Experiment

We validate the effectiveness of our method in two translation scenarios: (1)
domain adaptation. (2) Mongolian-Chinese low resource language.

4.1 Experimental Setup

Data We use the following datasets for training and evaluation:
MULTI-DOMAINS: We use the multi-domains dataset[d], re-split by[10] for
the domain adaptation experiments. It includes German-English parallel data
for train/valid/test sets in four domains: Medical, Law, IT and Koran. The
sentence statistics of MULTI-DOMAINS datasets are illustrated in Table [l

Table 1. Statistics of dataset in different domains.

Train Valid Test
IT 222,927 2,000 2,000
Medical 248,009 2,000 2,000
Koran 17,982 2,000 2,000
Laws 467,309 2,000 2,000

Low-resource: We use the CCMT’19 Mongolian-Chinese dataset to evaluate
the performance of our method in low-resource scenarios. The bilingual parallel
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corpus comes from a comprehensive field, including daily conversations, gov-
ernment documents, government work reports, laws and regulations, etc. The
sentence statistics of Mongolian-Chinese dataset are illustrated in Table

Table 2. Statistics of dataset in Mongolian-Chinese.

Train Valid Test
Mo-Zh 247,829 1,000 1,000

Models For the domain adaptation experiments, we use the WMT’19 German-
English news translation task winner[I], available via the FATIRSEQ library
[12]. It is a Transformer encoder-decoder model [I3] with 6 layers, 1,024 di-
mensional representations, 8,192 dimensional feedforward layers and 8 attention
heads. Apart from WMT’19 training data, this model is trained on over 10 bil-
lion tokens of back translation data and fine-tuned on newstest test sets from
years prior to 2018.

For low-resource translation, we train a Mongolian-Chinese translation model
based transformer. The corpus is subworded using subword—nnnﬂ [14], using a
Adam optimizer [I5] with a warmup step of 10,000, epoch of 30 and setting early
stop. Other settings are kept the same as transformer-base.

Our experiments are based on the fairse(ﬂ sequence modeling toolkit to train
NMT models, using the fais{’| [I6] toolkit for external memory module construc-
tion and high-speed retrieval. We implement our approach on the open source
code of adaptive—knn—mtfl7 which implements the original KNN-MT based on
fairseq and has a good code structure.

4.2 Result and analysis

For the domain adaptive task, the main results are shown in Table[3] Consistency
improvement is obtained for all four domains of our method. The BLEU scores
are improved by 1.89, 0.51, 0.48, and 0.55 compared to kNN-MT. The minimum
improvement is in the Koran domain and the highest is in the I'T domain.

For the low-resource task, the experimental results are shown in Table [4
and it can be found that KNN-MT can also obtain a huge improvement on the
translation result in the low-resource domain, and our method is also improved
compared with kNN-MT.

Analysis Compared with kNN-MT our method is more flexible in the prob-
abilistic fusion stage, which is reflected in the results to obtain a consistent
improvement of BLEU. The biggest improvement in the domain adaptive exper-
iments is in the I'T domain, and by analyzing the translation results we speculate

! https://github.com/rsennrich/subword-nmt

2 https://github.com/pytorch/fairseq

3 https://github.com/facebookresearch/faiss

4 https://github.com/zhengxxn/adaptive-knn-mt
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Table 3. BLEU scores of Base NMT model, kNN-MT and our method on domain
adaptive experiments with hyperparameters k of 8, 4, 8 and 4, respectively. The linear
interpolation ratios o for kENN-MT are 0.7, 0.8, 0.7, and 0.7.

Model IT ‘ Medical ‘ Koran ‘ Laws
Base-NMT 32.05 36.25 14.38 41.78
kNN-MT 36.68 51.27 17.55 57.55
OURS 3857 | 5178 | 18.03 [ 58.1

Table 4. BLEU scores of Base NMT model, kNN-MT and our method on Mongolian-
Chinese low-resource experiments with hyperparameter k=4.

Model Valid Test
Base-NMT 27.85 36.56
KNN-MT 31.19 42.29
OURS 33.64 42.77

that it may be due to the presence of more low-frequency special nouns in the
IT domain. kNN-MT introduces noise in the retrieval process, while our method
performs better in the translation of low-frequency words.

In the low-resource scenario since the test sets of Mongolian-Chinese are
mostly simple short sentences, while the valid sets have more long and difficult
sentences. Therefore, the improvement of our method on the test sets is not as
large as that on the valid sets, which also reflects the effectiveness of our method
in complex translation scenarios to some extent. Since DST can produce different
results according to different probabilities and expose more information after
using label smoothing for ppsem, it increases the generalization and robustness
of the model.

4.3 Robustness

=4—KNN-MT ==¢=Ours 23 =4—KNN-MT ==¢=Ours

42.8
42.6

5 542.4
436 ma42.2 ‘\O\kfa
m

35 42

34 41.8

33 416

K=4 K=8 K-16 K=32 K=4 K=8 K=16 K=32
1T MO-ZH

Fig. 4. Robustness experiments of kNN-MT and our method at different hyperparam-
eters k.
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To verify the robustness of our method, we test the accuracy of translation
under different hyperparameters k. The experimental results are shown in Fig-
ure @l We find that the BLEU scores of kNN-MT fluctuate more in the case
of not optimal & values, indicating that the performance of kNN-MT is more
sensitive to the noise brought by k. And the performance of our method is also
affected during the increase of k, but with less fluctuation. It indicates that a
relatively good performance can be maintained at different noise intensities.

We also evaluate the robustness of our method in the domain-mismatch set-
ting, where we consider a scenario that the user inputs an out-of-domain sentence
(e.g. Medical domain) to a domain-specific translation system (e.g. IT domain)
to evaluate the robustness of different methods. Specifically, in IT—Medical set-
ting, We use hyperparameters and datastore in the IT domain, and then use
Medical test set to test the model with IT datastore. As shown in Table [5] the
retrieved results are highly noisy so that the kNN-MT encounters drastic per-
formance degradation. In contrast, our method could filter out some noise and
therefore prevent performance degradation as much as possible.

Table 5. Robustness Evaluation, where the test sets are from Medical/IT domains
and the datastore are from IT/Medical domains respectivally.

Model IT—Medical Medical—-IT
Base-NMT 36.25 32.05
KNN-MT 15.81 12.31

Ours 24.1 19.56

4.4 Case study

IT Mo-Zh
Source Weitere Suchergebnisse anzeigen 6 vl ¥ <unk>
Reference Show the next search results ANEL AR HLE N AT il W .
Base-NMT View more search results AL ik B A\ <unk>

KNN-MT | Show & Location Find additional matches | AL il HLiE M <unk> J&7E .
Ours Show more search results AL AL LB N FRAT Bl AL .

Fig. 5. Translation examples of different systems in I'T domain and Mongolian-Chinese.

As shown in Figure 5] we show examples of translations in the IT domain and
Mongolian-Chinese. We can observe that KNN-MT can produce mistranslations
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in some cases, and our method can generate translations with more fidelity and
fluency in this case. Moreover, our method can alleviate the (unk) problem to a
certain extent. In the Mongolian-Chinese example, both the Base NMT model
and kNN-MT can not translate correctly when the corpus contains (unk), which
also shows that our method is more robust and higher error tolerance.

5 Conclusion

In this paper we propose dynamic fusion of kNN-MT. By using Dempster—Shafer
theory instead of fixed linear interpolation to dynamically fuse the two probabil-
ity distributions from NMT model and memory modules. Through experiments
in domain adaptation, we verify that our method has some improvement on
KNN-MT and validate that our method is more robust. In addition, we explore
the possibility of applying kNN-MT in low-resource scenarios for the first time.
In the future, we will deeply explore the application of non-parametric methods
in low-resource scenarios.
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