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Abstract. When parallel training data is scarce, it will affect neural machine
translation.For low-resource neural machine translation (NMT), transfer learn-
ing is very important, and the use of pre-training model can also alleviate the
shortage of data.However, the good performance of common cold-start transfer
learning methods is limited to the cognate language realized by sharing its vo-
cabulary. Moreover, when using the pre-training model, the combination of gen-
eral fine tuning methods and NMT will lead to a serious problem of knowledge
forgetting.Both methods have some defects, so this paper optimizes the above
two problems, and applies a new training framework suitable for low correla-
tion language to Mongolian-Chinese neural machine translation.Our framework
includes two technologies: a) word alignment method under hot-start, which alle-
viates the problem of word mismatch between the transferred subject and object
in transfer learning. b) approximate distillation,not only retains the pre-trained
knowledge,but also solves the forgetting problem, so that the encoder of NMT
has stronger language representation ability.The results show that BLEU is in-
creased by 3.2, which is better than ordinary transfer learning and multilingual
translation system.
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1 Introduction

Despite the rapid development of neural machine translation [1] recently, its main im-
provements and optimizations can not be easily applied to language pairs with insuffi-
cient resources.Basic training procedure of NMT does not work well with only a few
bilingual data [2], and collecting bilingual resources is difficult for many languages.
With fewer parallel corpora and sparse data, it is easy to cause over fitting problems in
the training process. The trained model has poor robustness and generalization ability.

In order to solve this problem, unsupervised and transfer learning [3] methods are
generally used to improve the quality of the model with the help of external resources.
⋆ Corresponding Author
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However, the unsupervised method has no annotation set, so the cross entropy method
cannot be used for tuning.Back-translation [4] will produce false corpus, and the in-
crease of false corpus will also produce noise, resulting in inaccurate translation.The
concept of transfer learning is: We pre-train an NMT model on a high-resource lan-
guage pair (parent language pair), and then continue training on the model using the
bilingual data of another low-resource language pair (child language pair).This method
can alleviate the poor performance of the model caused by less corpus, but it also has
some shortcomings.

Some studies [5] show that the most important problem in transfer learning is the
vocabulary mismatch between the transfer subject and the transfer object, which seri-
ously limits the translation performance.We regard the source language in the parent
language pair as the transfer subject, and the source language in the child language pair
as the transfer object. If the words of the subject and object can be correctly correspond-
ing during the transfer, the performance of transfer learning will be greatly improved.
In previous studies [6], transfer learning is divided into hot-start method and cold-start
method according to whether there is training data of child language pairs when training
the parent model.The cold-start method does not use sublanguage for data. In contrast,
in the hot-start method, we have available sublanguage pair training data when train-
ing the parent model. We can use sublanguage pair knowledge to solve this problem.
In this paper, a cross-lingual word embedding method is used to convert words, and
a semi-supervised method is used to correctly correspond the two languages without
shared sub words. It can alleviate the word mismatch mentioned above and effectively
improve the translation quality.

The pre-train models have demonstrated their excellent performance in various nat-
ural language processing tasks including translation tasks. Now the common training
paradigm is ”pre-train + fine-tune”, which means that specific downstream tasks are
tuning on the pre-trained model, so that additional knowledge can be obtained when
training downstream tasks.

However, compared with other tasks that directly fine-tune the pre-trained model,
NMT has two obvious characteristics, the availability of large training data (10million
or more) and the high capability of the baseline NMT model (i.e., Transformer).These
two features need a lot of updating steps in the training process in order to adapt to the
large capacity model well.However, too many updates will lead to disastrous forget-
ting [7]. Too many updates in training will forget the general knowledge before train-
ing.Since the output of the pre-train model and the encoder output of NMT are essen-
tially language models, this paper does not use the ”pre-train + fine-tune” method, but
chooses the approximate distillation method to integrate the pre-trained knowledge into
the encoder, so as to enhance the language representation ability of the NMT encoder
and avoid the forgetting problem caused by a large number of updates.

This work proposes a new framework to adapt the transfer learning of neural ma-
chine translation to low-resources languages:

– Cross-lingual word embedding under hot-start is used to alleviate the problem of
word mismatch between the transfer subject and the transfer object.
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– The approximate distillation method is used to ensure that the NMT model can
retain the previously trained knowledge and enhance the generalization ability of
the NMT encoder.

2 Background

2.1 NMT

Neural Machine Translation is essentially an encoder decoder system.Typical NMT
structures include RNN, LSTM, Transformer, etc. The function of encoder is to encode
the source language sequence and extract the information in the source language. Then
the information is converted to the target language by the decoder, so as to complete the
translation of the language.

The training task is to map the source language sequence X = {x1, x2...xn} to the
target language sequence Y = {y1, y2...ym}. The sequence length can be different. In
this case here, n and m are the length of source sequence and target sequence respec-
tively.The model is trained on a parallel corpus by optimizing for the cross-entropy loss
with the stochastic gradient descent algorithm.

Lnmt = −
m∑
i=1

log p(θ)(yi|y<i, X) (1)

p(θ) is probability, θ is a set of parameters: source/target word embedding, encoder,
decoder, and output layer.The training objective is to minimize the loss in equation
(1) to obtain the optimal translation results.In Transformer, the encoder is similar to
the decoder in structure. The decoder is essentially a language model of language y.
Similarly, the encoder with an additional output layer can also be seen as a language
model. Therefore, it is natural to transfer the pre-trained knowledge to the encoder and
decoder of NMT.

2.2 Transfer Learning

Generally speaking, transfer learning refers to reusing knowledge from other fields/tasks
when facing new problems [8]. Especially when there is not enough training data to
solve this problem, transfer learning can play a better role. Because the hidden layer
of neural network can implicitly learn the general representation of data, the weight of
hidden layer can be copied to another network to transfer knowledge.

In NMT, the earliest transfer learning method was proposed by Zoph et al. [3] . In
their work, the parent model was first trained on high resource language pairs. Then,
the source word embedding is copied together with the rest of the model, and the ith
parent language word embedding is assigned to the ith child language word. Because
the parent and child source languages have different vocabularies, this is equivalent to
embedding the parent source words and randomly assigning them to the child source
words. In other words, even if a word exists in both parent and child vocabularies, it is
unlikely that it will be assigned the same embedding in both models.
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Fig. 1. Schematic diagram of transfer learning

For transfer learning, directly transferring the parameters of the parent model to
the child model is not the optimal solution. Because the input language changes from
the parent language to the child language, it is equivalent to introducing a completely
different data space. The migrated model parameters cannot quickly adapt to the data
space of the new language, and the translation effect will become worse. Previous stud-
ies have shown that the translation effect of transfer learning is closely related to the
correct alignment of word vectors. The higher the alignment, the better the transfer
effect.

2.3 Pre-train Techniques

In recent years, unsupervised pre-train of large neural models has recently completely
changed natural language processing technology. The most representative model is
BERT [9].Generally, there are two methods to use BERT’s feature, fine-tune and fea-
ture.For the fine-tune method, a simple classification layer is added to the pre-trained
model, and all parameters of downstream tasks are jointly fine-tuned, while the feature
method keeps the pre-trained parameters unchanged. In most cases, the performance of
the fine-tune method is better than feature method.

The basic steps of the tuning method in NMT scenarios: train the language model
on a large number of unlabeled text data, then initialize the NMT encoder with the pre-
trained language model, and use a marked data set for tuning. However, this process
may lead to catastrophic forgetting. After fine-tuning, the model performance on the
language modeling task will be significantly reduced. This may hinder the ability of the
model to use pre-trained knowledge. To solve this problem, we introduce a distillation
method to improve the model.

3 Methods

3.1 Word Alignment Under Hot-start

The biggest challenge of cross language transfer is vocabulary mismatch. When we re-
place only one source language, the NMT encoder will see a completely different input
sequence. The pre-trained encoder weight does not match with the source embedding.
Therefore, when we want to reuse the parent model parameters to train child language
pairs, we need to solve the vocabulary mismatch between the transfer subject and the
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transfer object. However, the cold-start method is not applicable to the two languages
that have nothing to do with subwords. Therefore, this paper uses the hot-start method to
solve this problem. Before training, a Cross-lingual word embedding alignment method
is used to match the words of the subject and object and align them correctly.

In this work, we use the method proposed by Patra et al. [10] and integrate it with
transfer learning. Before model training, by embedding and aligning the words of the
two languages, the parent model can recognize the transfer of child language pairs dur-
ing training, so that the parameter migration can quickly adapt to the data distribution
of the new language, which is impossible for the cold-start method.

Set X = {x1, x2...xn} and Y = {y1, y2...ym}, They are two groups of word
embedding from the source language and the target language respectively. Then set
S =

{
(x1

s, y
1
s)...(x

k
s , y

k
s )
}

,S represent the word embedding that has been bilingual
aligned. We combine unsupervised distribution matching, alignment of known word
pairs and weak orthogonal constraints to learn the linear mapping matrix W that maps
X to Y .

Fig. 2. Cross-lingual word embedding mapping from child language to parent language.

Unsupervised method: Given X and Y, the objective of unsupervised loss is to
match the distributions of these two embedding spaces. We used an adversarial distri-
bution matching target, similar to the work of Conneau et al. [11]. Specifically, a source
to target mapping matrix W is learned to trick a discriminator D, which is trained to
distinguish between WX and Y . We parameterize our discriminator with MLP, or op-
timize the mapping matrix and discriminator with corresponding objectives:

LD|W = − 1

n

∑
xi∈X

log (1−D(WXi))−
1

m

∑
xi∈Y

logD(Xi) (2)

LW |D = − 1

n

∑
xi∈X

logD(Wxi) (3)

Aligning Known Word Pairs: Given aligned bilingual word embeddings S.Our
task is to minimize a similarity function(fs) and maximize the similarity between the
corresponding matched word pairs. Specifically, loss is defined as:

LW |S = − 1

|S|
∑

(xs
i
,ys

i
)∈S

fs(Wxs
i , y

s
i ) (4)
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Weak orthogonal constraint: Given an embedding space X , Patra et al. define
a consistency loss that maximizes a similarity function fa between x and WTWx ,
x ∈ X . [10] This cyclic consistency loss LW |O encourages orthogonality of the W
matrix based on the joint optimization:

LW |O = − 1

|X|
∑
xi∈X

fa(xi,W
TWxi) (5)

The above loss terms are used in conjunction with supervised and unsupervised
losses, allowing the model to adjust the trade-off between orthogonality and accuracy
based on joint optimization. This is particularly useful in embedded spaces that do not
conform to orthogonality constraints.The final loss function of the mapping matrix is:

L = LW |D + LW |S + LW |O (6)

It enables the model to utilize the available distribution information from the two
embedded spaces, so as to use all available monolingual data. On the other hand, it
allows the correct alignment of tag pairs in the form of a small seed dictionary. Fi-
nally, orthogonality is encouraged. We can think of and as opposed to each other. Co
optimization of the two helps the model strike a balance between them.

3.2 Approximate Distillation

The transfer learning initializes the child model with the trained parent model param-
eters, and then fine-tune the new training set.Since the new training set is generally a
low-resource language and the corpus is relatively small, it may not be able to fully
learn the source language knowledge of the sub language pairs.The commonly used
auxiliary method adopts the pre-train model to learn the source language knowledge,
and then initializes the knowledge to NMT for fine tune. Moreover, the use of fine-tune
of large pre-train model will reduce the speed of NMT [12]. In this regard, we use dis-
tillation method to integrate the knowledge obtained from the pre-train model into the
NMT encoder, retain the previous knowledge, and improve the language representation
ability of the encoder.

As shown in the figure, first use the pre-train language model(PLM) to train the
source language monolingual, and the trained knowledge is stored in the hidden layer
in the form of matrix.Then, the hidden layer of the PLM is taken as the teacher [13],
and the hidden layer state of the translation model encoder is taken as the student for
knowledge fusion. (The PLM and NMT encoder are essentially language models, so it
is reasonable to integrate the knowledge of the two language models.)

Lad = −
∥∥∥ĥlm − hl

∥∥∥2
2

(7)

Lad is the mean square error loss of the two hidden layer states, ĥlm is the state
of the last hidden layer of the PLM, and hl is the state of the lth hidden layer of the
encoder.By punishing the loss of mean square error between the PLM and the state
of the hidden layer of NMT encoder, the states of the two hidden layers are gradually
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Fig. 3. The frame of approximate distillation.

close.In the experiment, the hidden state of the PLM is frozen, and the last layer (top
layer) of the encoder is set to hl. We find that adding the supervision signal to the top
encoder layer is the best.During training, distillation loss can be used together with
traditional cross entropy loss:

Lall = α · Lnmt + (1− α) · Lad (8)

Lnmt is the cross entropy loss of the translation model. In the above formula, the
total loss Lall combines Lnmt and Lad, and α is a hyperparameter to balance the trans-
lation preference of the translation system [14]. In this way, the knowledge of PLM and
the NMT can be combined to make better use of the pre-trained knowledge, so that the
NMT encoder can obtain stronger representational capacity and generalization ability.

4 Experiment

4.1 Settings

We conducted experiments on English-Chinese (en-zh) and a low-resource translation
task (mo-zh). For the en-zh task, the train set consists of 2 million bilingual sentences
from the casic2015 corpus. We use NIST02 as the validation set and nist03-06 as the test
set. For low-resource tasks, the dataset is provided by ccmt2019, as shown in Table 2.
Mongolian monolingual comes from Wikipedia and news, with a total of 700m words.

Table 1. Dataset distribution

language Train set Validation set Test set
mn-zh 256,754 2,000 2,000
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All NMT models in our experiments follow the basic 6-layer transformer architec-
ture of Vaswani et al. [1].Each source language adopts byte pair encoding [15], 30K
merge operation, while the target language adopts 50k bpe merge encoding. The train-
ing was conducted using sockeye [16] and Adam optimizer with default parameters.
The maximum sentence length is set to 100 and the batch size is set to 4,096 words.
When the confusion on a verification set does not improve on the 12 checkpoints, the
training is stopped.We set the checkpoint frequency of the parent model to 10,000 up-
dates and the child model to 1,000 updates.The teacher model of knowledge distillation
is trained by Bert, and the model in the experiment is BERTbase, which follows the
structure proposed by Devlin et al. [9], l=12, h=768, a=12, total parameters=110m. Set
the hyperparameter α to 0.5 during knowledge fusion.

We first train the collected Mongolian and English monolingual corpus into word
embedding. In order to learn cross language mapping, we use a semi-supervised frame-
work, and the parameters basically follow the settings of Patra et al. [10]. The unsu-
pervised method uses muse, the data set is composed of Mongolian and English dic-
tionaries in the corpus, and the weak supervised method uses a set of aligned word
embedding. After learning the final mapping matrix, the words in the source language
are mapped to the target space, and their nearest neighbors are selected as the final result
according to the CSLS [11] distance. We compared it with the multilingual translation
model. In multilingual training, we trained a single and shared NMT model [17]. For
each subtask, we learned the joint BPE vocabulary of all source and target languages
in the parent / subtask through 32K merge operations. The training data of subtasks are
oversampled, so the proportion of parent / child training samples of each small batch is
about 1:1.

4.2 Results And Analysis

Results: From table 2, in low-resource tasks, our method improved the scores of 3.2 and
1.7 BLEU respectively compared with traditional transformer and multilingual transla-
tion system.

Table 2. Comparison of experimental results.

System Method BLEU
Vaswani et al. [1] Transformer base 27.4
Johnson et al. [17] Multilingual 28.9

Ours
+Transfer Learning(cold-start) 28.7

+Cross-lingual Word Embedding 29.5
+Asymptotic Distillation 30.6

Analysis: In the first part of our experiment, we adopted the cold-start method of
transfer learning, and directly transferred parameters without using sublanguage pairs.It
is observed from the experiment that the cold-start method is also effective for low-
resource languages, but it is less effective than the hot-start method using cross-lingual
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word embedding.It also further shows that the higher the degree of lexical matching be-
tween the subject and object of transfer, the better the effect of transfer learning.Finally,
the approximate distillation method is added. Compared with the Transformer, it has a
3.2 BLEU improvement. We believe that the distillation method can enable the encoder
of NMT to fuse additional information.

4.3 Ablation Test

In this section, we will further study our method in detail, compare it with their similar
variants, and conduct general ablation studies.

Pre-trained word embedding type In Table 3, we analyze the cross-lingual impact
of pre-trained embedding. We try not to transfer word embedding in transfer learning,
but use pre-trained monolingual word embedding to replace the original word embed-
ding.We observe that monolingual embedding without cross language mapping also
improves transfer learning, but it is significantly worse than our proposed mapping to
parent (en) embedding.You can also use learning mapping on the target (zh) side.Target
mapping embedding is not compatible with the pre trained encoder, but directly guides
the sub model to establish the connection between the new source and target.It also
improves the system, but our method is still the best of the three embedding types.

Table 3. The experimental performance of different types of cross-lingual word embedding.

Pre-trained embedding BLEU%
None 4.8
Monolingual 6.3
Cross-lingual (en-mo) 7.7
Cross-lingual (zh-mo) 7.2

Encoder vs Decoder As shown in Table 4, the effect of integrating the pre-trained
knowledge into the encoder is good, but the effect is low in the decoder.Since BERT
contains bidirectional information, the fusion of pre-trained knowledge into decoder
may lead to inconsistency between training and reasoning.Gpt-2 uses limited self at-
tention, where each token can only focus on its left context. Therefore, it is natural
to introduce gpt-2 into the NMT decoder.It may be that the decoder is not a typical
language model, it only contains information from the source language.

Vocabulary Size Table 5 shows the effect of different vocabulary sizes on translation.
We changed the number of source side BPE merges and fixed the target vocabulary. The
better result is to use 20K or 30K merges, which indicates that the vocabulary should be
small in order to maximize the quality of translation. Fewer BPE merges result in more
language independent tags. Cross-lingual embedding makes it easier to find overlaps in
the shared semantic space. However, if the vocabulary is too small, we may lose too
many language specific details necessary in the translation process.
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Table 4. Different Transformer modules and different PLM were used for approximate distillation
ablation test.

PLM to module BLEU
BERT to Transformer Encoder 29.5
BERT to Transformer Decoder 26.8
GPT-2 to Transformer Encoder 28.3
GPT-2 to Transformer Decoder 27.7

Table 5. Baseline translation results for different vocabulary sizes.

BPE merges BLEU
20k 27.1
30k 27.4
40k 26.6
50k 26.3

4.4 Case Analysis

Fig. 4. Translation effects of different tasks.

It can be seen from the figure that the translation of this method basically conforms
to the standard translation in terms of accuracy and fluency, so as to control the details
of translation.In the case analysis, the words“玉米” and “宝贝” in Mongolian
are very similar and easy to be confused.Translating these two words correctly makes
the translation more accurate. And the words “几乎” and “掰” more reflect
the fluency of language and express more accurately. It is proved that this method can
improve the accuracy and fluency of translation.

5 Conclusion

The main contributions of this paper include: we propose a transfer learning framework
based on hot-start. On the basis of transfer learning, we alleviates the problem of vocab-
ulary mismatch between two languages without shared subwords.Meanwhile, in order
to give full play to the role of the PLM and improve the generalization ability of the
NMT encoder, we use the approximate distillation method to guide the NMT model to
learn the output probability distribution of the PLM.In this way, the NMT model can



5. CONCLUSION 11

master the knowledge probability distribution of the PLM and the NMT encoder at the
same time. Experiments show that this method has a significant impact on low-resource
translation tasks.
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