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Abstract. For Neural Machine Translation (NMT) tasks with limited domain 
resources, curriculum learning provides a way to simulate the human learning 
process from simple to difficult to adapt the general NMT model to a specific 
domain. However, previous curriculum learning methods suffer from cata-
strophic forgetting and learning inefficiency. In this paper, we introduce a re-
view-based curriculum learning method, targetedly selecting curriculum ac-
cording to long time interval or unskilled mastery. Furthermore, we add general 
domain data to curriculum learning, using the mixed fine-tuning method, to im-
prove generalization and robustness of translation. Extensive experimental re-
sults and analysis show that our method outperforms other curriculum learning 
baselines across three specific domains. 

Keywords: Neural Machine Translation, Domain Adaptation, Review-based 
Curriculum Learning. 

1 Introduction 

Recently, constructing high-quality domain-specific neural machine translation 
(NMT) models has become a research hotspot. Due to the scarcity of domain-specific 
parallel corpora, it is currently impossible to train robust domain-specific NMT mod-
els from scratch. Domain adaptation uses general domain data and unlabeled-domain 
data to improve the translation of in-domain models. It focuses on two problems, 
catastrophic forgetting and overfitting [1]. Common NMT domain adaptation meth-
ods can be divided into two categories [2]: data-centric methods, including back trans-
lation and data selection; model-centric methods, including training objective-centric 
methods, architecture-centric methods and decoding-centric methods. These methods 
can alleviate the catastrophic forgetting and overfitting problems to varying degrees. 
 Curriculum learning (CL) is also used to solve the above problems. It imitates the 
way that humans learn curriculum from easier to harder [3], which results in better 
generalization of the NMT model. Two main questions of CL are how to rank the 
training examples, and how to modify the sampling procedure based on this ranking 
[4]. The above questions can be abstracted to difficulty measurer and training sched-
uler [5]. Usually, difficulty measurers are task-specific, however, the existing prede-
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fined training schedulers are data/task agnostic. Training schedulers can be divided 
into discrete and continuous schedulers, and we focus on the improvement of the 
discrete schedulers in this paper. One-Pass [3] and Baby Step [6] are two discrete 
schedulers, which divide the sorted data into shards from easy to hard and then start 
training with the easiest shard. The difference between two methods is that at each 
learning phase, One-Pass only uses the current shard but Baby Step merges previously 
used shards into the current shard. One-Pass may suffer from the problem of cata-
strophic forgetting, while Baby Step has more generalization but takes longer to train 
when the number of shards increases. 
 From practical experience, humans usually review the previous curriculums when 
they learn. One-Pass can be compared to not reviewing the curriculums they have 
learned before, and Baby Step is analogous to reviewing all the previous curriculums 
at each phase. However, it is enough for humans to strengthen their memory by re-
viewing only some of the previous curriculums at each learning phase. In this paper, 
we imitate the way humans review curriculums, and propose this review-based CL 
method. Aiming at the problems of the existing discrete scheduler method, we design 
two review methods which select the previous curriculums that need to be reviewed 
and add them to the current training set. The first method calculates time interval of 
the previous curriculums between their last learning phase and the current phase, and 
selects curriculums with a larger time interval. The second method is based on the 
model’s mastery of the previous curriculums, calculating the increment of curriculum 
scores between two close phases to select curriculums which are not proficiently mas-
tered. Fig. 1 shows the difference among the curriculum shards used at each phase for 
One-Pass, Baby Step and Review. The columns represent the curriculum shards and 
the rows represent the curriculum shards used at each learning phase. The darker col-
or of each square, the less similar it is to the specific domain. 
 

 
Fig. 1. Comparison of shards used at each phase for different curriculum learning methods 

With applying to NMT domain adaptation, the above methods still have the problem 
of forgetting. So we refer to the practice of mixed fine-tuning [7], bringing general 
domain data into each phase of CL after training the general model. The general do-
main can be seen as the learning foundation that humans already have when learning 
curriculums. Although it is not completely consistent with the distribution of specific 
domains, the knowledge contained in general domain can help NMT model learn 
common information, enhance the robustness and avoid forgetting happens. 
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 We test our approach on TED talks for German-English and Chinese-English pairs 
and patent abstracts for German-English pairs. Experimental results show that our 
approach significantly improves compared to baseline methods, and alleviates the 
problem of occupying too long training time for Baby Step as well. 

2 Related Work 

From a data-driven perspective, CL is essentially similar to the instance weighting 
approach in domain adaptation. It makes NMT model pay more attention to the loss 
of certain training examples, and allows the model to adapt or forget certain pairs.  
Zhang et al. [8] design different difficulty measurers and training schedulers applying 
to NMT, and point out that no strategy can perfectly outperform the others, but they 
did not further analyze the effect of other hyperparameters in CL. Zhang et al. [9] use 
Baby Step method in NMT domain adaptation for the first time. They take in-domain 
data as the first curriculum shard, and analyze the effect of two distinct data selection 
methods and distinct number of shards on NMT model. However, they did not con-
sider the negative impact of slower convergence speed and the problem of forgetting 
due to fine-tuning with in-domain data and unlabeled-domain data. Xu et al. [10] 
proposed a dynamic CL method, using training loss decline of two iterations as diffi-
culty measurer and a function of BLEU value on the development set as training 
scheduler. This method achieves better performance in low-resource scenarios but no 
improvement when in-domain data is rich. 
 From a model-driven perspective, CL is also related to training objective-centric 
methods. Fine-tuning [11] is a classical method which first trains a general domain 
model and then uses in-domain data to fine-tune it. The fine-tuned model has the 
problems of catastrophic forgetting and overfitting, so it is difficult to obtain a NMT 
model with high robustness only by fine-tuning with in-domain data. Thompson et al. 
[12] use Elastic Weight Consolidation (EWC) method for NMT domain adaptation, 
reducing the weight of nodes that have too much influence on the general domain to 
achieve the effect of continuous learning. This method avoids catastrophic forgetting 
to a certain extent. Chu et al. [7] propose mixed fine-tuning. After training the general 
NMT model, it uses data mixed with in-domain data and general domain data rather 
than in-domain data alone, which greatly improves the robustness of the model. We 
borrow the idea of mixed fine-tuning to add general domain data to CL for solving the 
problem of catastrophic forgetting. 

3 Review-based Curriculum Learning 

In this paper, we propose review-based curriculum learning for NMT. It focuses on 
the improvement of discrete training scheduler. We define the number of review cur-
riculums at each phase and how to choose the review curriculum. Also, we introduce 
general domain data to each phase to solve the forgetting problem for NMT domain 
adaptation. The overall method is shown in Fig. 2. The solid line pointed out from the 
curriculum shard represents that it is used at this phase, while the dotted line indicates 
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that some of the curriculum shards need to be reviewed. These two parts are com-
bined into a review subset for each phase, and then further mixed with the general 
domain data and in-domain data in a certain proportion to form the whole training set 
of each phase. At each phase, we continue training the NMT model until it is con-
verged. 

 
Fig. 2. Review-based curriculum learning method enhanced with general domain 

3.1 Time-Based Review Method 

Commonly, humans usually forget curriculums which are learned a long time ago. 
Inspired by this phenomenon, we believe that the longer a curriculum has been since 
it was last learned, the more important it is to review it. We assume that the number of 
CL phases is 𝑇𝑇, and the fixed data shard used at each phase is 𝐶𝐶𝑖𝑖(1 ≤ 𝑖𝑖 ≤ 𝑇𝑇). When 
reaching a certain phase 𝑖𝑖, in addition to current shard 𝐶𝐶𝑖𝑖, the number of other curricu-
lums to be reviewed is set to 𝑛𝑛𝑖𝑖. Apparently, the range of 𝑛𝑛𝑖𝑖 is between 1 and 𝑖𝑖 − 1. 
As Algorithm 1 shows, when reviewing curriculums at phase 𝑖𝑖, we calculate the dif-
ference value 𝛥𝛥𝑡𝑡𝐶𝐶𝑖𝑖  between last used phase 𝑡𝑡𝐶𝐶𝑗𝑗  and current phase 𝑖𝑖  for curriculum 
𝐶𝐶𝑗𝑗  (1 ≤ 𝑗𝑗 ≤ 𝑖𝑖 − 1). Then we sort the difference values to choose the top 𝑛𝑛𝑖𝑖 curricu-
lum shards from largest to smallest and add them to phase 𝑖𝑖 data 𝐶𝐶𝑖𝑖𝑟𝑟𝑟𝑟. Finally, the last 
used phase of the top 𝑛𝑛𝑖𝑖  curriculum shards is updated to 𝑖𝑖. It is worth noting that 
phase 1 does not need to review, so 𝐶𝐶1𝑟𝑟𝑟𝑟 = 𝐶𝐶1. 
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Algorithm 1 Time-based Review Method 
Input: Number of curriculum phase 𝑇𝑇, each curriculum shard data 𝐶𝐶𝑖𝑖(1 ≤ 𝑖𝑖 ≤ 𝑇𝑇). 
Output: Each curriculum phase data 𝐶𝐶𝑖𝑖𝑟𝑟𝑟𝑟(1 ≤ 𝑖𝑖 ≤ 𝑇𝑇). 

1: 𝐶𝐶1𝑟𝑟𝑟𝑟 ← 𝐶𝐶1 
2: for 𝑖𝑖 =  2, 3, … ,𝑇𝑇 do 
3:         for 𝑗𝑗 =  1, 2, … , 𝑖𝑖– 1 do 
4:                𝛥𝛥𝑡𝑡𝐶𝐶𝑗𝑗 ← 𝑖𝑖 − 𝑡𝑡𝐶𝐶𝑗𝑗 
5:         end for 
6:        Sort 𝛥𝛥𝑡𝑡𝐶𝐶𝑗𝑗(1 ≤ 𝑗𝑗 ≤ 𝑖𝑖 − 1) from largest to smallest, choose the top 𝑛𝑛𝑖𝑖 curric-

ulum shards 𝐶𝐶𝑟𝑟1 ,𝐶𝐶𝑟𝑟2 , … ,𝐶𝐶𝑟𝑟𝑛𝑛𝑖𝑖 . 
7:         𝐶𝐶𝑖𝑖𝑟𝑟𝑟𝑟 ← 𝐶𝐶𝑖𝑖 + 𝐶𝐶𝑟𝑟1 +  𝐶𝐶𝑟𝑟2 + ⋯+ 𝐶𝐶𝑟𝑟𝑛𝑛𝑖𝑖  

8:         for 𝑘𝑘 =  1, 2, … ,𝑛𝑛𝑖𝑖  do 
9:                 𝑡𝑡𝐶𝐶𝑟𝑟𝑘𝑘 ← 𝑖𝑖 

10:         end for 
11:         𝑡𝑡𝐶𝐶𝑖𝑖 ← 𝑖𝑖 
12: end for 

 

3.2 Master-Based Review Method 

From a different point of view, humans also review the curriculums which are not 
proficiently mastered. We change this thought into an achievable method. As algo-
rithm 2 shows, first we define the model’s mastery of the previous curriculum shards 
as the BLEU value on them. Considering if we translate all the sentences in the 
shards, it will cost a long translation time, so we take 1000 sentence pairs from each 
curriculum shard at equal spacing as a representation of the shard and calculate the 
BLEU value. We think that compared to the last phase, the less curriculum shard 
improves, the more it needs to be reviewed. The master score is estimated as: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝑗𝑗 =
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝑗𝑗

𝑖𝑖  −  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝑗𝑗
𝑖𝑖−1

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝑗𝑗
𝑖𝑖−1                                            (1) 

where 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝑗𝑗
𝑖𝑖  represents that the BLEU value of 1000 pairs from curriculum shard 

𝐶𝐶𝑗𝑗  (1 ≤ 𝑗𝑗 ≤ 𝑖𝑖 − 1) at phase 𝑖𝑖 before training. If the score is smaller than others, we 
think that the NMT model has not learned this shard suffciently, and conversely we 
consider this shard has improved more and does not need more attention. We select 
top 𝑛𝑛𝑖𝑖 shards according to the master score from smallest to largest, and add them to 
phase 𝑖𝑖 data 𝐶𝐶𝑖𝑖𝑟𝑟𝑟𝑟. Finally we calculate 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝑖𝑖

𝑖𝑖  and train new NMT model. 
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Algorithm 2 Master-based Review Method 
Input: Number of curriculum phase 𝑇𝑇, each curriculum shard data 𝐶𝐶𝑖𝑖(1 ≤ 𝑖𝑖 ≤ 𝑇𝑇). 
Output: Each curriculum phase data 𝐶𝐶𝑖𝑖𝑟𝑟𝑟𝑟(1 ≤ 𝑖𝑖 ≤ 𝑇𝑇). 

1: 𝐶𝐶1𝑟𝑟𝑟𝑟 ← 𝐶𝐶1, calculate 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶1
1  

2: for 𝑖𝑖 =  2, 3, … ,𝑇𝑇 do 
3:         for 𝑗𝑗 =  1, 2, … , 𝑖𝑖– 1 do 
4:                Use current model to calculate 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝑗𝑗

𝑖𝑖 . 
5:              Calculate master score of 𝐶𝐶𝑗𝑗 by Equation 1. 
6:         end for 
7:        Sort 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝑗𝑗(1 ≤ 𝑗𝑗 < 𝑖𝑖) from smallest to largest, choose top 𝑛𝑛𝑖𝑖 curriculum 

shards 𝐶𝐶𝑟𝑟1 ,𝐶𝐶𝑟𝑟2 , … ,𝐶𝐶𝑟𝑟𝑛𝑛𝑖𝑖 . 
8:         𝐶𝐶𝑖𝑖𝑟𝑟𝑟𝑟 ← 𝐶𝐶𝑖𝑖 + 𝐶𝐶𝑟𝑟1 +  𝐶𝐶𝑟𝑟2 + ⋯+ 𝐶𝐶𝑟𝑟𝑛𝑛𝑖𝑖  

9:         Use current model to calculate 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝑖𝑖
𝑖𝑖 . 

10:         Train the new NMT model. 
11: end for 

 

3.3 General Domain Enhanced Training 

General domain can be seen as the inherent memory of humans, so in order to main-
tain a high level of generalization and robustness of NMT model, we add general 
domain data to each learning phase. In the experiments of Zhang [9], as training goes 
on, the weight of in-domain data is decrease due to the increment of unlabeled-
domain data. Therefore, we assign weight to in-domain data individually, so that each  
phase uses a fixed proportion of general domain data, in-domain data and partially 
unlabeled-domain data: 

𝐷𝐷𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡 = 𝑤𝑤𝐺𝐺𝐺𝐺 ∗ 𝐷𝐷𝐺𝐺𝐺𝐺 + 𝑤𝑤𝐼𝐼𝐺𝐺 ∗ 𝐷𝐷𝐼𝐼𝐺𝐺 + 𝑤𝑤𝑈𝑈𝐺𝐺 ∗ 𝐶𝐶𝑡𝑡𝑟𝑟𝑟𝑟                          (2) 

where 𝐷𝐷𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡  represents training set at phase 𝑡𝑡 , 𝑤𝑤𝐺𝐺𝐺𝐺 , 𝑤𝑤𝐼𝐼𝐺𝐺  and 𝑤𝑤𝑈𝑈𝐺𝐺  represent the 
weight of general domain data 𝐷𝐷𝐺𝐺𝐺𝐺 , in-domain data 𝐷𝐷𝐼𝐼𝐺𝐺 and review unlabeled-domain 
data 𝐶𝐶𝑡𝑡𝑟𝑟𝑟𝑟  separately. 

4 Experiment 

4.1 Data and Setup 

General Domain Data. We use two general domain datasets in the experiment, Ger-
man(de)-English(en) and Chinese(zh)-English. German-English general dataset in-
cludes Europarl, news commentary, OpenSubtitles and Rapid corpus, while Chinese-
English includes CCMT2017, news commentary, UN Parallel Corpus. After tokeniza-
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tion (not to Chinese) and filtering sentence length up to 80 words, we get 19 million 
sentence pairs for German-English and 20 million sentence pairs for Chinese-English. 

In-domain Data. Chinese-English and German-English TED domain data are from 
Duh [13], and German-English patent domain data is from Junczys-Dowmunt et al. 
[14]. The concrete number of three domain corpora is shown in Table 1. 

Table 1. Number of sentences in each dataset 

Dataset Training Set Development Set Test Set 
TED (zh-en) 166373 1958 1982 
TED (de-en) 148460 1958 1982 

Patent (de-en) 150000 2000 2000 

Unlabeled-domain Data. For unlabeled-domain data in two language directions, we 
use web-crawled bitext from the Paracrawl project [15]. After data cleaning and data 
selection, we get 20 million sentences for German-English and 8.3 million sentences 
for Chinese-English. For the final corpus size in the experiment, Zhang et al. [9] sug-
gest 1024k pairs, and we follow this setup. 

Curriculum Learning Setup. We refer to Zhang et al. [9] for some experiment set-
tings. For difficulty measurer we use Moore-Lewis [16] method to build language 
models trained on in-domain and unlabeled-domain, and calculate the cross-entropy 
difference of sentence in unlabeled-domain dataset. KenLM [17] is used to build lan-
guage models on the target side (English). Then, we set 𝑛𝑛𝑖𝑖 = ⌊log2𝑖𝑖⌋. This setting is 
designed to review an appropriate number of curriculums to avoid forgetting or inef-
ficient learning problem of not reviewing (like One-Pass) or reviewing all shards (like 
Baby Step). Finally, we set the number of curriculum phase to 5, which is different to 
Zhang et al. [9]. It is explained in experiment analysis. 

Subword model. We use general domain data to train sentencepiece [18] subword 
segmentation model. The vocab size is set to 32000 both for two languages. Since 
general domain is large enough to train a robust segmentation model, there is no need 
to retrain the subword model when we use the in-domain data and unlabeled-domain 
data. 

NMT Setup. In all experiments, we use the OpenNMT [19] implementation of the 
Transformer [20], with 6 layers for both encoder and decoder and 8 attention heads. 
The word embedding size is set to 512. We use Adam [21] optimizer to adjust the 
learning rate automatically, with 𝛽𝛽1 = 0.9 and 𝛽𝛽2 = 0.998. We set batch size to 6000, 
and training stops when the perplexity on the development set has not improved for 5 
checkpoints (2000 batches per checkpoint) at each phase. In addition, considering that 
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the number of general domain data is much larger than the number of in-domain and 
unlabeled-domain data, we set the weights (𝑤𝑤𝐺𝐺𝐺𝐺:𝑤𝑤𝐼𝐼𝐺𝐺:𝑤𝑤𝑈𝑈𝐺𝐺) to 10:1:1. This is done to 
oversample in-domain data and maintain high learning ratio on the other two do-
mains, which not only biases the final model distribution towards the specific domain, 
but also improves the robustness of the NMT model. 

Evaluation Metric. We use BLEU as the evaluation metric, and calculate with sa-
creBLEU tool [22]. 

4.2 Main Results 

Main experimental results is shown in Table 2. The model trained with large amount 
of general domain data (GEN) has BLEU scores of 35.98, 18.29 and 26.47. Fine tun-
ing (FT) on in-domain data improves BLEU significantly by 3.25, 3.51 and 23.98. 
Mixed fine tuning (MFT) brings more robustness to NMT model, with improvement 
of 2.32, 2.17 and 0.94 BLEU score compared to fine tuning method. 

For previous curriculum learning methods, One-Pass suffers from catastrophic for-
getting problem apparently, with BLEU scores of 31.09, 15.48 and 34.03. Although 
Baby Step improves this situation with BLEU scores of 36.97, 22.60 and 50.74, it 
does not work as well as fine tuning on TED (de-en) domain, and still has the problem 
of forgetting. Our two methods (T-Review and M-Review) perform better than One-
Pass and worse than Baby Step, because the NMT model does not focus on the in-
domain data all the time during the training process, and too much attention to the 
unlabeled-domain data may cause forgetting problem. 

After we add general domain data into CL phases, all the CL methods mentioned 
perform better than original. T-Review+MFT performs best in all the methods with 
BLEU scores of 42.40, 24.49 and 52.29. Compared to MFT method, it improves 
BLEU by up to 0.9 score on patent (de-en). Also, compared to Baby Step method, it 
improves BLEU by up to 5.43 score on TED (de-en). We believe that general domain 
data enhances the generalization of the NMT model, so that instead of reviewing all 
the previous curriculum shards, we use only a part of shards that are necessary to be 
reviewed to improve the effect of NMT model. 
 As for the comparison of our two methods, T-Review+MFT performs slightly bet-
ter than M-Review+MFT. Note that T-Review is not related to the NMT model while 
M-Review is related. The possible reason is that T-Review has a more logical review 
schedule for the shards and is able to review the curriculum evenly. We also compare 
the method of randomly selecting shards for review with MFT (Rand-Review+MFT). 
The result shows that even randomly select curriculums can be better than Baby 
Step+MFT and One-Pass+MFT, however, designed review curriculum rules are more 
effective such as T-Review and M-Review. 
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Table 2. Main experiment results 

Method TED (de-en) TED (zh-en) patent (de-en)  
GEN 35.98 18.29 26.47 
FT 39.23 21.80 50.45 
MFT 41.55 23.97 51.39 
One-Pass 31.09 15.48 34.03 
        +MFT 42.24 24.08 52.19 
Baby Step 36.97 22.60 50.74 
        +MFT 42.05 24.06 51.97 
Rand-Review+MFT 42.23 24.25 52.09 
T-Review 35.35 21.05 47.67 
        +MFT 42.40 24.49 52.29 
M-Review 35.64 21.17 47.45 
        +MFT 42.37 24.20 52.24 

 

5 Analysis 

5.1 Effect of Mixed Fine Tuning 

We analyze the effect of MFT for CL. As shown in Table 3, we conduct the ablation 
studies on whether CL approach incorporate the general domain and whether in-
domain weight is fixed, with Baby Step and T-Review method. We can see that when 
the in-domain weight is fixed, T-Review outperforms original method by up to 3.29 
BLEU score on TED (de-en), but Baby Step has an unstable effect as decreasing on 
TED (zh-en) and patent (de-en). When mixed with general domain only, T-Review 
increases by up to 4.19 BLEU score on TED (de-en) compared with original method, 
and this value is 3.81 for Baby Step. However, due to the reason that in-domain 
weight is unfixed and the Review method is not stable to review the in-domain shard, 
the effect of T-Review is worse than Baby Step. 

When combining the general domain and fixing the in-domain weight, the robust-
ness of NMT model is greatly improved. Relatively increasing the in-domain weight 
can learn the in-domain knowledge better with the help of general domain and solve 
the problem of overfitting. So T-Review+MFT performs better than Baby Step+MFT. 
It is worth noting that One-Pass+MFT is even more effective than Baby Step+MFT, 
which further proves that MFT does not require multiple repetitions of curriculms 
when applied to CL. Only the curriculums which need to be reviewed is enough. 
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Table 3. Ablation study results for general domain and in-domain fixed weight 

Method TED (de-en) TED (zh-en) patent (de-en) 
Baby Step 36.97 22.60 50.74 

+Fixed in-domain weight 39.00 21.93 50.66 
+General domain 40.78 23.49 51.42 
+MFT (Fixed in-domain 
weight+ General domain) 

42.05 24.06 51.97 

T-Review 35.35 21.05 47.67 
+Fixed in-domain weight 38.64 22.44 50.28 
+General domain 39.54 22.77 49.53 
+MFT (Fixed in-domain 
weight+ General domain) 

42.40 24.49 52.29 

 

5.2 Low-Resource Scenerio 

We also explored the effects of using a review-based CL with MFT in a low-resource 
scenario. We set the number of patent (de-en) sentence pairs to 15k rather than 150k, 
in order to simulate the effect of extremely low-resource domain scenario. Table 4 
shows that two Review+MFT methods have an average increment of 2.32, 0.55 and 
0.53 BLEU score compared to MFT, One-Pass+MFT and Baby Step+MFT methods. 
This result indicates the effectiveness of using data from other rich resources to in-
crease model robustness and also confirms that CL+MFT, especially review-based 
CL+MFT, could improve translation abilities of NMT models and avoid the problem 
of overfitting and catastrophic forgetting. 

Table 4. Results in low-resource scenario 

Method patent (de-en) 
MFT 45.35 

One-Pass+MFT 47.12 

Baby Step+MFT 47.14 

Rand-Review+MFT 47.39 

T-Review+MFT 47.68 

M-Review+MFT 47.67 

5.3 Data Sharding 

We experiment with different number of shards setting and experiment on TED (de-
en) domain with Baby Step+MFT and M-Review+MFT. As Fig. 3 shows, the two 
methods both achieve the best performance at the point of 5 shards. As the number of 
shards increases, the BLEU scores show a decreasing trend. Although Baby Step 
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increases when the number of shards is 20, the BLEU score does not change too 
much. This result differs from the findings of Zhang et al. [9]. The possible reason is 
that our method is mixed with general domain and fixes weights of three domains, 
and increasing number of shards with the same number of unlabeled-domain data will 
reduce the number of data in each shard. This may result in the curriculum being re-
peated too many times at one phase, which may lead to overfitting. Further, consider-
ing the negative effects of too long training time of too many shards, we set the num-
ber of shards to 5 better than the number of other shards and Review is better than 
Baby Step. 

5.4 Training Efficiency 

Table 5 shows the comparison of training steps for three CL methods. We can see that 
T-Review+MFT reduces training time by average of 18k steps and M-Review+MFT 
reduces an average of 12k steps both compared to Baby Step+MFT. It proves that 
review-based method with MFT can accelerate the convergence of NMT model. We 

 
Fig. 3. Different number of curriculum learning shards 

argue that the number of curriculums learned at each phase has an impact on the con-
vergence speed. More curriculums make the model less easy to converge, however, 
reviewing appropriate number of courses reduces training time and improves training 
efficiency. 

Table 5. Training steps for three curriculum methods 

Method TED (de-en) TED (zh-en) patent (de-en) 
Baby Step+MFT 92k 168k 144k 
T-Review+MFT 84k 146k 118k 
M-Review+MFT 86k 150k 132k 
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6 Conclusion 

To address the problems of catastrophic forgetting and learning inefficiency of previ-
ous curriculum learning methods for NMT domain adaptation, this paper proposes a 
review-based curriculum learning method. We first select curriculum shards with long 
time interval or unskilled mastery to review in each learning phase, and add general 
domain data to improve the robustness of NMT model. The experimental results show 
that our method improves significantly compared to previous curriculum learning 
methods and the simulation of low-resource scenario also demonstrate the effective-
ness. 
 For future work, we will explore more effective methods and more applications for 
review-based curriculum learning. Additionally, it is a meaningful job for adding 
dynamic weighting method to our approach. 
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