
A Comparison of Pruning Methods for

CYK-based Decoding in Machine Translation

YuZe Gao

Natural Language Processing Lab

Northeastern University

yuze.gao@outlook.com

Tong Xiao

Natural Language Processing Lab

Northeastern University

xiaotong@mail.neu.edu.cn

Abstract

We present some popular pruning meth-
ods for CYK-based decoding in machine
translation, and describe the implementa-
tion of them. Then, we provide the exper-
imental results of these methods and the
comparison of these results. In addition,

we analyze each method in terms of de-
coding speed and translation accuracy,
based on which some possible optimiza-
tions for each method are given. Lastly,
we propose some novel pruning methods
for CYK-based decoding.

1 Introduction

 In recent years, statistical machine translation
(SMT) has been extensively investigated, show-

ing state-of-the-art performance in many transla-
tion tasks. In current SMT paradigm, a core step
is to search for the "best" target string for the
given source string, namely decoding. Several
methods are available to implement SMT decod-
ers. For instance, we can incrementally add tar-
get words in a left-to-right fashion [Ortiz, 2003;
Yang, 2010], or build translation hypotheses in a

bottom-up fashion [Young, 1996]. One popular
method is CYK-based decoding that originates
from monolingual parsing [Cheppalier, 1998].

In CYK decoders, a partial hypothesis can be
produced by the use of hypotheses generated on
smaller segments/spans (Fig. 1). The algorithm
starts with the smallest spans, and proceeds once

it generates all possible hypotheses for a span.
The final translation can be accessed when we
finish the computation on the entire span. The
brilliance of CYK-based decoding comes from
its simplicity and from the natural manner in
which one can build derivations using linguisti-

cally-motivated grammars or formally syntactic
rules. Therefore, it is widely used in hierarchical
machine translation (MT) systems [Vilar, 2012;
V. F. López, 2010; Chiang David, 2007].

One bottleneck of SMT decoding is its speed.
In CYK-based decoding, there are two factors

that can slow down the system.
1) Large Search Space. Given a source string,

the number of possible translations is huge. Even
for a word-based model, decoding is a NP-
complete problem [Knight, 1999]. The situation
is worse for modern hierarchical MT models be-
cause more ambiguities are introduced by the
underlying derivations of rules.

2) Cubic Time Complexity of CYK. The time
complexity of CYK algorithm is O(n3), i.e., the
decoding time is cubic to the length of the input
sentence. Decoding long sentences is a big prob-
lem.

Obviously, pruning is of great importance to
the speed-up of CYK decoders. The simplest of

these is beam pruning, which keeps the most
promising candidates in a certain distance from
the top-1 candidate, and discards the rest [Koehn,
2004; Robert C 2007]. The decoder can run fast-
er using cube pruning/growing, which is also
popular in MT systems [Gesmundo et al, 2010].
Cube pruning is particularly powerful if one can

organize the decoding problem into a search
problem in hypergraphs.

In this paper, we empirically compare three
pruning methods for CYK-based decoding that
try to address or relieve its cubic time complexity
(Fig. 1). In particular, we divide the CYK algo-
rithm into two parts – a dual loop on spans
(O(n2)) and a loop on segmentation that chops a

given span (O(n)). We use the parser tree and

punctuation information to prune unlikely spans
(the two outermost loops), and use phrase

第十一届全国机器翻译研讨会(CWMT 2015) 中国 · 合肥 2015.9.24-25

- 65 -

Administrator
打字机文本
Proceedings of the 11th China Workshop on Machine Translation, pages 65–73, Sept. 23-25, 2015 HeFei, AnHui, China

boundary tags to prune unlikely segmentations
(the innermost loop).

We implement these methods using the NiuT-
rans toolkit, and compare the experimental re-
sults of them with that of the baseline, which

applied beam pruning and cube pruning. We
found that the pruning quality is in proportion to
the retentivity and osculation of the expression
meaning. For example, the punctuation inserted
by people is not only good for pruning, but also
not harmful to the BLEU (translation quality in-
dex) due to its retentivity of expression intention

and its meaning entirety. We also found that the

pruning strategies we obtained from our analysis
are advantageous for decoding speed-up but have
some impair on the BLUE. Furthermore, because
parser trees are not the perfect decoding paths
that the machine translation systems can recog-

nize, they may skip some key paths with poten-
tial global optimal hypotheses. In addition, the
methods that used information we got from word
alignment showed favorable maintenance on the
BLUE.

Lastly, we propose some novel ideas that can
bring further decoding speed-up and BLUE im-

provements.

CYK Algorithm FrameExample Steps of CYK Algorithm

Step 1

5 phrases

Step 2

Step 3

Step 4

Step 5

 wo xihuan kan shu 。

Possible combination

of an example span

 wo xihuan kan shu

O(n2)

 Input: A sentence with n phrases

for each length = 1 to n;
 for each beg = 1 to n;
 end = beg + length;

 for each mid = beg to end
 generate span[beg, end] from
 span[beg, mid] &span[mid+1, end]; O(n)

Output: Top hypothesis in span[1, n]

2 3 41

2-41

1-2 3-4

1-3 4

Span

Fig. 1. Example Steps and Frame of CYK Algorithm

2 Baseline System

We used the open source toolkit NiuTrans
(Xiao et al., 2012) in this work. In particular, we
chose NiuTrans.Phrase, which supports Bracket
Transduction Grammars (BTGs) and resorts to
CYK decoding, and conducted experiments with
various pruning methods on Chinese-English
translation. By default, beam pruning (beam

width = 30) and cube pruning are used. We used
the GIZA++ toolkit to get symmetric word
alignments from bilingual corpus and obtained
the final alignment using the "final-diag-grow-
and" heuristics. All translation phrases are ex-
tracted from bitext in a standard manner [Koehn
et al., 2003]. Nine features are employed for de-

coding, including bidirectional translation proba-
bilities, bidirectional lexical weights, an n-gram
language model, a word bonus, a phrase bound,
and a maximum entropy-based reordering model.
All feature weights are tuned on a development
set via minimum error rate training [Och.F.J,
2003].

Our bilingual corpus consists of 462300 sen-
tences (LDC2003E14, LDC2005T10,

LDC2003E07, LDC2005T06, LDC2005E83,
LDC2006E26). The 5-gram language model was
trained using the Xinhua portion of the English
Gigaword corpus and the target-side of the bilin-
gual data. We used the NIST MT04 evaluation
set as the Dev set and MT05/06 as the Test set.
BLEU values and decoding speed of develop-

ment and test sets are shown in Fig. 2.

Fig. 2. Experimental Result of Baseline System

第十一届全国机器翻译研讨会(CWMT 2015) 中国 · 合肥 2015.9.24-25

- 66 -

3 Parser Tree-based Pruning

Linguistically, a sentence can be decomposed

into phrasal segments (several words) in certain
organized form. A popular way is to represent a
sentence with a syntactic tree or a parser tree. In
such a way, one can capture the underlying struc-
ture of the sentence and the recursive manner in
which grammar rules form this structure. See Fig.
3 for an example parser tree. Despite good liguis-

tical explanations, the decoding of most MT sys-
tems does not require the guidance of parser trees.
It is natural to impose restrictions on CKY de-
coding so that decoding is only performed on
spans that are consistent with tree constituents.

NP
VP

VP

IP

VV

VV NP

PU

wo xihuan kan shu 。
① ② ③ ④ ⑤

Fig. 3. Example Parser Tree

3.1 Implementation

In this experiment, we applied the parser tree
in the loop for locating the beg and end. First, we
define a constraint as the set of possible spans
that refers to the beg and end of a span in the

parser tree. We regard spans that are in accord-
ance with the parser tree are qualified for our
protection. We obtain the constraint information
from the parser tree and label each phrase with a
number tag. In addition, when generating the
parser tree, we store the leftmost and rightmost
children tags in their attributive father nodes (ex-

cept the leaf nodes that store the information of
phrases). Plus, given a tree node with m children
nodes (excluding leaf nodes), we can have n
combination of its children nodes to ensure the
complete combinations of the span.

n = C

To better understand the span definition, we
explain it using an example, which represents a
sentence with 12 phrases (Fig. 4). The span node
indicates the property of the phrase span (e.g.,
VP means verb phrases). For example, the span
node VP is a sequence from phrase 4 to phrase 8
and it is a VP phrase span. The phrase node indi-

cates the number tag of the phrase. When gener-
ating the parser tree, take the span node VP for
example, we store the numbers 4 and 8 in the
node VP, indicating its leftmost and rightmost

phrases. Furthermore, we permit the combination
of two child nodes (except the leaf node). All the
children nodes of a node can be combined to-
gether, the result of which is a span with the
leftmost and rightmost phrase tags; this ensures

that the whole sentence can be eventually pro-
duced. For example, possible combinations of
VP’s children nodes are: DT and CP, DT and NN,
and CP and NN, returning tag 4 and tag 7, tag 4
and tag 8, and tag 5 and tag 8 respectively.

NP
VP

M NR

1

NN

4

CP

9 103 125 86 7 11

IP

2

JJ

NNIN

DT

RB VB NN

NN DT S CC NN

E.g.

E.g.

Phrase
(leaf) Node

Span Node

Fig. 4. Constraints in a Parser Tree

The set of span information is a representation
of the decoding paths of the sentence. We store
all the permitted spans in the information set.
Because we apply the information set as a hard
constraint in the decoding, we consider and gen-
erate the hypotheses of spans in the set.

3.2 Experimental Results

In this experiment, we did not set limitations
on the pruning lengths, that is, we permit the

pruning on all spans regardless of their lengths.
The experimental result is shown in Fig. 5.

Fig. 5. Experimental Result of

Parser Tree-based Pruning

It can be seen from Fig.5 that parser tree-based
pruning makes significant improvement on the
decoding speed (nearly 40 times faster). Howev-

er, the translation quality suffers a great loss,
with a decrease of 3 point in the BLUE.

第十一届全国机器翻译研讨会(CWMT 2015) 中国 · 合肥 2015.9.24-25

- 67 -

3.3 Discussion and Improvement

In the implementation of parser tree-based
pruning, only the spans that are in accordance
with the parser tree information are allowed to
generate translation hypotheses. Though this
mechanism can speed up the decoding process
significantly, it definitely prunes the most sen-

tence spans, including the useful ones that can
improve the translation quality. Furthermore,
imprecise parser tree may impair the translation
quality, such as neglecting useful spans, or com-
bining the phrases into the whole sentence with a
wrong structure.

Improper pruning is likely to eliminate poten-

tial high-quality translation hypotheses. However,
we can make improvements through the follow-
ing methods.

1) Weaken the Pruning Degree

We can define a required condition for the
pruning, i.e., we do pruning only when the span
satisfies the required condition. If we know cer-
tain structures in the sentence cannot be translat-

ed well, but they bear a well analyzed parser re-
sult, we can use the parser information to direct
this kind of span decoding. For example, we can
just do pruning on phrase spans with property VP
or NP. Another way is adding a parameter to
control the threshold of pruning lengths. In addi-
tion, we can also increase the possibility of high-

quality spans by permitting the combinations of
children nodes of different span nodes in the par-
ser tree.

2) Enlarge the Coverage Degree of Parser

Tree Information
We can increase the number of possible de-

coding paths for a given span in parser tree-based

pruning. Because one sentence can have different
parser trees under different grammar analysis
(rightmost reduction analysis, leftmost reduction
analysis, etc.). We can employ information of
these parser trees to make a union parser tree
information to gain more reasonable hypotheses
paths in the span, lightening the side effects from
imprecise parser tree, which may increase the

BULE value.

4 Punctuation-based Pruning

In general, punctuations are used to separate a
sentence into several meaningful segments. For
instance, commas are widely used in starting or
ending a clause. So most of the current languages

have applied the punctuation to make efficient
and clear expression. In MT, we can make use of
this “natural” segmentation to prune hypotheses

that cross punctuations over two or more indi-
vidual segments.

4.1 Implementation

In machine translation, what we expect is that
the translation result is loyal to the actual mean-

ing of source language. So, in punctuation-based
pruning, our goal is to skip the useless spans that
will not form a complete meaning. For an n-
phrase sentence with only one punctuation at
point k (1 ≤ k ≤ n) and no other punctuations be-
sides beginning and end points of the sentence,
we can say there are {(k-1)*(n-k)-2} bad spans in
the sentence because they cross the punctuation.

Actually, we will skip these spans because they
will not present us a complete meaning of parts
of the sentence. Since we use the punctuation to
check the span integrity on partial meaning, the
punctuation constraints can be used in the second
stage when choosing spans.

When implementing punctuation-based prun-

ing, we use the following restriction principles.
As for spans with no punctuation in them, we
will generate all hypotheses for them. This prun-
ing method we defined just works on the spans
with punctuations. In other words, we just con-
sider spans that have punctuations in them and
judge them according to the following criteria.

1) If span [i-1, i+1] has punctuations in it, we
consider this span to be valuable and will gener-
ate all possible combinations.

2) If span [i, i+1] or span [j-1, j] is the begin-
ning or the end of the decoding sentence, we
treat this case like case 1).

3) If neither span [i, i+1] nor span [j-1, j] has a
punctuation, or is the beginning or end of the

decoding sentence, we will skip these spans.
To understand this method, we will illustrate

using an example (Fig. 6). The example sentence
has 13 phrases, and it is used to demonstrate the
constraints on the second stage of CYK. Span [5,
10] is not qualified because it crosses a punctua-
tion at point 7, and the same is true for span [1,

10]. Though span [3, 10] also crosses a punctua-
tion, it is qualified because it is useful to form
the bigger span [3, 12], span [3, 13], etc., which
have relative complete meanings. Though both
the beginning and end points of span [0, 10] are
not punctuations, the beginning point is the be-
ginning of the whole sentence, so it also deserves
our protection in the constraints.

4.2 Experimental Results

In this experiment, we took into consideration
the points before and after the spans. Further-

第十一届全国机器翻译研讨会(CWMT 2015) 中国 · 合肥 2015.9.24-25

- 68 -

more, we impose restrictions on the left of spans
(the span that between the point/phrase immedi-
ately before the span and the beginning of the
span) and right of spans (the span that between

the point/phrase after the span and the end of the
span) separately. The experimental result is
shown in Fig. 7.

小强 说 ：“ 我 的 哥哥 ，是 一 名 军人 。 ”

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Desirable
Abandoned

Fig. 6. Example Sentence with Punctuations

The baseline system applied cube-pruning and
beam search. “Left” experiment means the left
restriction we defined is qualified, and “Right”
experiment means the right restriction is quali-

fied. “Left && Right” means both left and right
restrictions are qualified. “Left || Right” means at
least one of the left and right restrictions are
qualified. The results indicate that punctuation-
based pruning makes a boost in the decoding
speed with no big loss in BLUE.

4.3 Discussion and Improvement

As can be seen from Fig. 7, the Baseline ex-
periment has a very slow decoding speed. Apart

from some difference in decoding speed, the sec-
ond and third experiments have no big difference.
The fourth experiment is the intersection of the
second and the third experiment, but it becomes
so slow because it treats so many spans as quali-
fied. The fifth experiment is the union of the sec-
ond and third experiments. It is obvious that the

pruning method in the fifth experiment (i.e.,
Left&&Right group) has the best result, nearly 8
times as fast as the Baseline System.

We know that different punctuations has dif-
ferent functions in a sentence. Some punctua-
tions indicate the coordinating relation, and some
indicate the explicative connection, etc. . How-

ever, we may omit this kinds of punctuation
function to make punctuation-based pruning eas-
ier to apply. We can further improve the BLUE
value if we can do better conversion of punctua-
tions into detailed and accurate constraints.
 In fact, we can also make further improve-
ments in decoding speed in punctuation-based
pruning. The above methods just influence span

selection, after which we also have to generate
the translation hypotheses. Thus, punctuation-
based pruning can also be applied on the process
of hypotheses generation.

Given a translation span, when generating
translation hypotheses in CYK-based decoder,
we prefer hypotheses that consist of two small
spans with complete meaning. We can treat a

span with no punctuation in it as a complete-
meaning span. So punctuations can be used to
impose constraints to prune small spans with in-
complete meanings.

Fig. 7. Experimental Results of

Punctuation-based Pruning

In Fig. 6, take span [4, 11] for example, we
can use span [4, 8] and span [9, 11] to generate
the translation hypothesis of span [4, 11]. How-

ever, these two spans are not the expected com-
plete-meaning spans. So we can skip this kind of

第十一届全国机器翻译研讨会(CWMT 2015) 中国 · 合肥 2015.9.24-25

- 69 -

hypothesis generating points. The expected spilt
of span [4, 11] is spans [4, 6] and [7, 11], or
spans [4, 7] and [8, 11]. In the improved experi-
ment, we treat the case that the splitting point
(excluding the beginning and end points of the

sentence) is a punctuation as qualified, that is, we
first check whether the splitting point is a punc-
tuation or not, then filter out the incomplete split-
ting points. We did two sets of different experi-
ments on the third stage of CYK decoding, the
results of which is shown in Table 1.

Table 1. Experimental Results of Improved Punctuation-

based Pruning

Type
Speed

(sent/s)

BLUE

(max)

Unimproved

Punctuation Pruning
3.56 39.21

*Improved

Punctuation Pruning
3.75 39.17

**Improved 4.16 39.18

The first experiment is the unimproved punc-
tuation-based pruning. The second experiment

examines the beginning and end points of small
spans, checks they are punctuation or not; the
third experiment just takes into account the end
of the first small span and the beginning of the
second span. As can be seen, the third experi-
ment gained a better decoding speed, a 17%
boost and nearly no loss in BLUE.

5 Phrase Boundary-based Pruning

In hierarchical MT systems, especially those
bear the CYK algorithm, a sentence is translated
over source-language span units (or sub-strings)
from single words to the whole sentence. So one
might expect to focus more on the decoding of

promising source spans but avoid the computa-
tion on the rest that is unlikely to contribute to
the final translation. To do this, we introduce
labels to indicate whether a word is the begin-
ning/end of a source-language phrase. Here, a
phrase is not linguistically motivated; instead, it
is a string of words that are projected by MT pre-
ferred derivations. These labels can be then used

as soft or hard constraints to guide the MT to
decode spans with good phrase boundaries and
"skip" spans with no clear boundaries.

Normally, given a to-be-translated sentence of
n phrases p1p2

……pn, we define that a phrase pi
(1<i<n) is in the class “Beg” if there exists a
constituent phrase span pi

……pj for some (i<j). In

the same way, we will regard a phrase pj (i<j<n)

is in the class “End” if there exists a constituent
phrase span pi

……pj for some (j>i). There are two
different and separate classification tasks.

Note that the first phrase p1 and the last phrase
pn are unambiguous since they begin/end a span.

The first/last phrase p1/pn must begin/end a span
covering the whole sentence.

Span boundary can be recognized and judged
by some external trained models. We can use the
span boundary information (labelled with four
different tags) to skip some decoding spans.

5.1 Implementation

We trained a model, which labels the test set

with tags automatically. We got the model-
training data from word alignment and used the
CRF tools to train this model.

5.1.1 Data Preparation

Grammar parser tree is close to the mind of
human, but it may not be the way that the trans-
lation systems think. So, to get the beginning and

end tags that are close to the thinking of transla-
tion systems, we first use word alignment to get
the phrase spans that can generate a context-free
grammar tree, which will be used as model-
training data.
 [Zhang, et al., 2008] proposed a method to
learn the translation boundaries from Synchro-
nous Grammar Tree, using the word-level align-

ments alone without reference to external syntac-
tic analysis. Since word-level alignment is many-
to-many from two language permutation, we can
easily use the method in [Chiang, 2005] to get
the decomposition tree from word-level align-
ment without any grammar assistance.

We extract the tags from the decomposition

tree obtained from word-level alignment. In con-
text-free grammar tree, we regard the phrase
span in the same sub-tree as a translation span. In
the translation span, we label the beginning
phrase of the phrase sequence with tag B (Begin-
ning Tag), and the end phrase tag E (End Tag).
There is an example in Fig. 8 shows these tags.

EB E

 ① ② ③

 jintian de zhanlan

Fig. 8. Example Definition of Beginning and End Tags

第十一届全国机器翻译研讨会(CWMT 2015) 中国 · 合肥 2015.9.24-25

- 70 -

However, some phrases may be the beginning
and end tags at the same time, which we label
with tag D (Double tag). And S (Single Tag) is
for those phrases that are neither the beginning
tag nor the end tag.

5.1.2 Training

The data we got from word-level alignment is
dull, with just the tags and phrases, which will
decrease the accuracy of the trained model. To
increase the accuracy of the trained model, we
use information gained from the grammar tree,
such as Part of Speech (PoS) information, the
phrase span it can begin or end with.

NP

DNP NP

NNNP

NT

DEG

 ① ② ③

 jintian de zhanlan

Fig. 9. PoS Attributes

PoS information is illustrated in Fig. 9. Capital
letters like ‘NP’, ‘NN’, ‘DNP’, etc. are labels of
different grammar parts of a sentence in the par-
ser tree. For example, the phrase ‘jintian’ is an
NT phrase, and it can be the beginning of a

phrase span in DNP subtree or a phrase span in
NP subtree.

5.1.3 Pruning Criterion

After trained the model, we label each phrase
in the sentence with a tag, which is ‘B’ or ‘E’ or
‘D’ or ‘S’. As shown in Fig. 11, suppose the
translation span [beg, end] has a splitting point
mid, when generating the translation hypothesis,
we will check the end point (mid) of span [beg,

mid] and the beginning point (mid+1) of span
[mid + 1, end], if the tags are not we expected
(for example, the end of span [beg, mid] is a ‘B’
tag, while the beginning of span [mid +1, end] is
an ‘E’ tag), we will skip it. However, we have to
impose constraints on the lengths of the pruning
phrases to ensure that the short spans can survive

the pruning.

beg mid... mid+1 end...

EB

Translating Span

Fig. 11. Criterion Point

5.2 Experimental Results

In this experiment, we set a threshold on the
phrase length that can be pruned, and impose this
constraint on the second part of CYK (Fig.1).
Here, we just prune in the case that the ending of
span [beg, mid] has a ‘B’ tag and the beginning
of span [mid +1, end] has an ‘E’ tag.

 The baseline system in this experiment used
the punctuation-based pruning method (case
“Left&&Right”) in the first part of CYK (Fig. 1
and Fig. 7). Fig. 10 shows the result of the Dev
set.

Fig. 10. Experimental Result of

Phrase tag-based Pruning

5.3 Discussion and Improvement

In contrast with the first two methods, the re-
sult is far from satisfactory. In particular, the im-
provement for pruning length range 6~7 is

13.8%~15.4%, but a decrease of 0.67~0.97 in
BLUE point incurred. There are two factors that
may affect this method, and we can improve this
method using the following proposals.

1) Insufficient or Improper Use of Phrase

Tags
The tags in this experiment are not precise

enough to distinguish all the unqualified transla-
tion spans from qualified ones. We can add more
detailed judgments on phrase tags by classifying
the phrase into more categories. For example, if a
phrase is neither a ‘B’ point nor an ‘E’ point, we
can regard it as a single phrase, which can help
do more pruning in other circumstances.

2) Inaccuracy of the Model

In fact, the model we trained is not as good as
we expected. The accuracy of the model is 80%
at the maximum. So the tags it labelled on the

第十一届全国机器翻译研讨会(CWMT 2015) 中国 · 合肥 2015.9.24-25

- 71 -

test set are not in accordance with the original
training set, that is, we did not get the satisfied
tags on the test set. This inaccuracy may account
for the disappointing experimental result.

6 Other Possible Pruning Methods

In CYK-based decoders, the hypotheses of
spans are generated from smaller spans at each
splitting point. Thus, every splitting point needs
a time-consuming process to traverse and com-
bine hypotheses from smaller spans. Given a
span [beg, end] with a splitting point mid, we can

make use of the information of the splitting point
mid or the relation between two smaller spans
(span [beg, mid] and span [mid + 1, end]) on both
sides of the splitting point, such as beam re-
strictions on splitting points, mutual information.

6.1 Mutual Information

Mutual information is the relation mutuality
between two objects. Since there is some relation

between different phrases in a sentence, we can
use mutual information to indicate the tightness
between different phrase spans. Using the infor-
mation entropy as the pruning criterion, we can
give the generating priority to adjacent spans
with high information entropy.

6.2 N-best List Filtering in CYK

In CYK-based decoding, since every splitting

point K can generate a set of different translation
hypotheses, instead of generating the translation
hypotheses from every possible splitting point
and giving a detailed and complex scoring of the
hypotheses, we can give an instant estimated
score for every possible point based on some
properties that determine the final score. We can

just use the n best estimated points to generate
the hypotheses, which can prune a lot of hypoth-
eses with low scores in advance.

7 Related Work

We conduct the experiments in a Chinese-to-
English phrase-based model, with beam search

and cube pruning applied. Initial methods like
beam search and cube pruning are widely used in
the optimization of decoding [Koehn, 2003;
Robert, 2007]. Improved methods based on beam
search and cube pruning have been widely stud-
ied for phrased-based [Koehn, 2004; Tillmann
and Ney, 2003; Tillmann, 2006] and syntax-
based translation models [Chiang, 2007; Huang

and Chiang, 2007; Watanabe et al., 2006; Huang
and Mi, 2010].

Our work has several differences from previ-
ous efforts.

In parser tree-based pruning, [Hirofumi, 2008]
used the source tree constraints to restrict the
word reordering in Inversion Transduction

Grammar (ITG)-supported decoders. However,
we use the parser tree information to restrict the
translating path and the reordering between irrel-
evant phrases, and implement it in a simple way.

In punctuation-based pruning, [Valentin, 2011]
used the punctuation to restrict the reordering in
dependency parsing. However, we treat punctua-

tions as symbols for judging the intactness of
span meanings, and use them to prune the decod-
ing search space.
 In phrase boundary-based pruning, [Xiong,
2010] used the boundary segment tags as the soft
constraints for recognizing the translation zone,
and [Wenduan, 2013] used the phrase tags to do

context-sensitive pruning in string-to-tree models.
We use this kind of labels as hard constraints in
CYK-based decoders and verify their effects on
different span lengths.

8 Conclusion

CYK is a popular algorithm for implementing

decoders for SMT systems, but it has a cubic
time complexity. We compared three popular
pruning methods for CYK-based decoding that
try to relieve this complexity

The grammar parser tree-based pruning gained
outstanding decoding speed, but it somewhat
decreased the translation quality. The decoding
paths that the parser tree represents are possibly

not the optimal ones in the view of machine
translation systems. Future work can focus on
increasing the coverage of the key decoding
paths that gained from the parser trees.

Punctuation-based pruning achieved an overall
satisfying result in both decoding speed and
translation quality. However, phrase boundary-

based pruning did not get any satisfied result in
either decoding speed or translation quality. To
improve this method, future work can focus on
increasing the accuracy of the model and on
making better use of the phrase tags.

We also proposed some other novel pruning
methods for CYK-based decoding. Future work

would be to implement these methods on top of
the same toolkit as we used and compare their
results with those of current pruning methods.

第十一届全国机器翻译研讨会(CWMT 2015) 中国 · 合肥 2015.9.24-25

- 72 -

Acknowledgements

This work was supported in part by the Na-

tional Science Foundation of China (Grants
61272376, 61300097 and 61432013). We would
like to thank the anonymous reviewers and Jing-
bo Zhu for their pertinent comments and helpful
discussion. We also would like to thank Qiang Li
for building parts of the baseline system.

References

1. Feng Y., Mi H., Liu Y., and Liu Q. An efficient

shift-reduce decoding algorithm for phrased-

based machine translation. In Proceedings of the

23rd International Conference on Computational

Linguistics: Posters (COLING '10). (2010): 285-
293.

2. O. Daniel, G. Varea, and F. Casacuberta. An Em-

pirical Comparison of Stack-Based Decoding Al-

gorithms for Statistical Machine Translation.

2003:654-663.

3. Y. Steve. "Large Vocabulary Continuous Speech

Recognition: a Review." IEEE Signal Processing

Magazine 21.4(1996):786 - 797.

4. J. Cheppalier, and M. Rajman. "A generalized

CYK algorithm for parsing stochastic CFG." In

Proc. of Tabulation in Parsing and Deduction

(TAPD)’ 1998:98

5. V. David, et al. "Jane: an advanced freely avail-
able hierarchical machine translation toolkit."

Machine Translation 26.3(2012):197-216.

6. F. López, M. Corchado, F. De Paz, S. Rodríguez,

J. Bajo Statistical Machine Translation Using the

Self-Organizing Map Distributed Computing and

Artificial Intelligence Advances in Intelligent and

Soft Computing Volume 79, 2010, pp 131-138

7. Xiao, T., Zhu, J., Zhang, H., & Li, Q. (2012).

NiuTrans: An Open Source Toolkit for Phrase-

based and Syntax-based Machine Translation. Je-

ju, Republic of Korea (pp.19-24).

8. K. Philipp, J. Och, and D. Marcu. "Statistical

phrase-based translation." Proceedings of the

2003 Conference of the North American Chapter

of the Association for Computational Linguistics
on Human Language Technology - Volume

1Association for Computational Linguistics,

2003:127--133.

9. F. Och. "Minimum Error Rate Training in Statis-

tical Machine Translation." Proc ACL32.17

(2003):701-711.

10. C. David. "Hierarchical Phrase-Based Transla-

tion." Computational Linguistics 33.2(2007):201-

228.

11. K. Kevin. "Decoding Complexity in Word-

Replacement Translation Models." Computation-

al Linguistics 25.4(1999):607--615.

12. K. Philipp. Pharaoh: A Beam Search Decoder

for Phrase-Based Statistical Machine Translation

Models. Machine Translation: Springer Berlin

Heidelberg, 2004:115-124.

13. Robert C. Moore and Chris Quirk Faster Beam-

Search Decoding for Phrasal Statistical Machine

Translation Proceedings of MT Summit XI 2007.

14. G. Andrea, and J. Henderson. "Faster Cube

Pruning." In Proceedings of the International

Workshop on Spoken Language Translation

(IWSLT (2010):267--274.

15. Zhang H. , D. Gildea, and D. Chiang. "Extracting

Synchronous Grammar Rules From Word-Level

Alignments in Linear Time. "In Proceedings of

the 22nd International Conference on Computa-

tional Linguistics ((2008) COLING-08).

16. C. David. 2005. A hierarchical phrase-based

model for statistical machine translation. In Pro-

ceedings of ACL 2005, pages 263–270.

17. Xiong D., Zhang M， Li H. Learning Transla-

tion Boundaries for Phrase-Based Decoding Col-

ing 2010: Poster Volume, pages 383–390

18. Xu W., Zhang Y., P. Williams and P. Koehn,

Learning to Prune: Context-Sensitive Pruning for

Syntactic MT, Proceedings of the 51st Annual

Meeting of the Association for Computational

Linguistics, pages (2013): 352–357

第十一届全国机器翻译研讨会(CWMT 2015) 中国 · 合肥 2015.9.24-25

- 73 -

