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Abstract 

We present some popular pruning meth-
ods for CYK-based decoding in machine 
translation, and describe the implementa-
tion of them. Then, we provide the exper-
imental results of these methods and the 
comparison of these results. In addition, 

we analyze each method in terms of de-
coding speed and translation accuracy, 
based on which some possible optimiza-
tions for each method are given. Lastly, 
we propose some novel pruning methods 
for CYK-based decoding. 

1 Introduction 

    In recent years, statistical machine translation 
(SMT) has been extensively investigated, show-

ing state-of-the-art performance in many transla-
tion tasks. In current SMT paradigm, a core step 
is to search for the "best" target string for the 
given source string, namely decoding. Several 
methods are available to implement SMT decod-
ers. For instance, we can incrementally add tar-
get words in a left-to-right fashion [Ortiz, 2003; 
Yang, 2010], or build translation hypotheses in a 

bottom-up fashion [Young, 1996]. One popular 
method is CYK-based decoding that originates 
from monolingual parsing [Cheppalier, 1998]. 

In CYK decoders, a partial hypothesis can be 
produced by the use of hypotheses generated on 
smaller segments/spans (Fig. 1). The algorithm 
starts with the smallest spans, and proceeds once 

it generates all possible hypotheses for a span. 
The final translation can be accessed when we 
finish the computation on the entire span. The 
brilliance of CYK-based decoding comes from 
its simplicity and from the natural manner in 
which one can build derivations using linguisti-

cally-motivated grammars or formally syntactic 
rules. Therefore, it is widely used in hierarchical 
machine translation (MT) systems [Vilar, 2012; 
V. F. López, 2010; Chiang David, 2007]. 

One bottleneck of SMT decoding is its speed. 
In CYK-based decoding, there are two factors 

that can slow down the system.  
1) Large Search Space. Given a source string, 

the number of possible translations is huge. Even 
for a word-based model, decoding is a NP-
complete problem [Knight, 1999]. The situation 
is worse for modern hierarchical MT models be-
cause more ambiguities are introduced by the 
underlying derivations of rules. 

2) Cubic Time Complexity of CYK. The time 
complexity of CYK algorithm is O(n3), i.e., the 
decoding time is cubic to the length of the input 
sentence. Decoding long sentences is a big prob-
lem. 

Obviously, pruning is of great importance to 
the speed-up of CYK decoders. The simplest of 

these is beam pruning, which keeps the most 
promising candidates in a certain distance from 
the top-1 candidate, and discards the rest [Koehn, 
2004; Robert C 2007]. The decoder can run fast-
er using cube pruning/growing, which is also 
popular in MT systems [Gesmundo et al, 2010]. 
Cube pruning is particularly powerful if one can 

organize the decoding problem into a search 
problem in hypergraphs. 

In this paper, we empirically compare three 
pruning methods for CYK-based decoding that 
try to address or relieve its cubic time complexity 
(Fig. 1). In particular, we divide the CYK algo-
rithm into two parts – a dual loop on spans 
(O(n2)) and a loop on segmentation that chops a 

given span (O(n)). We use the parser tree and 

punctuation information to prune unlikely spans 
(the two outermost loops), and use phrase 
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boundary tags to prune unlikely segmentations 
(the innermost loop).  

We implement these methods using the NiuT-
rans toolkit, and compare the experimental re-
sults of them with that of the baseline, which 

applied beam pruning and cube pruning. We 
found that the pruning quality is in proportion to 
the retentivity and osculation of the expression 
meaning. For example, the punctuation inserted 
by people is not only good for pruning, but also 
not harmful to the BLEU (translation quality in-
dex) due to its retentivity of expression intention 

and its meaning entirety. We also found that the 

pruning strategies we obtained from our analysis 
are advantageous for decoding speed-up but have 
some impair on the BLUE. Furthermore, because 
parser trees are not the perfect decoding paths 
that the machine translation systems can recog-

nize, they may skip some key paths with poten-
tial global optimal hypotheses. In addition, the 
methods that used information we got from word 
alignment showed favorable maintenance on the 
BLUE. 

Lastly, we propose some novel ideas that can 
bring further decoding speed-up and BLUE im-

provements. 
 

CYK Algorithm FrameExample Steps of CYK Algorithm

Step 1

5 phrases

Step 2

Step 3

Step 4

Step 5

  wo     xihuan     kan     shu    。

Possible combination 

of an example span

 wo   xihuan    kan    shu 

O(n2)

         Input: A sentence with n phrases

for each length = 1 to n;
    for each beg = 1 to n;
    end = beg + length;
            
       for each mid = beg to end
          generate span[beg, end] from 
          span[beg, mid] &span[mid+1, end]; O(n)

Output: Top hypothesis in span[1, n]

2 3 41

2-41

1-2 3-4

1-3 4

Span

 
Fig. 1. Example Steps and Frame of CYK Algorithm 

 

2 Baseline System 

We used the open source toolkit NiuTrans 
(Xiao et al., 2012) in this work. In particular, we 
chose NiuTrans.Phrase, which supports Bracket 
Transduction Grammars (BTGs) and resorts to 
CYK decoding, and conducted experiments with 
various pruning methods on Chinese-English 
translation. By default, beam pruning (beam 

width = 30) and cube pruning are used. We used 
the GIZA++ toolkit to get symmetric word 
alignments from bilingual corpus and obtained 
the final alignment using the "final-diag-grow-
and" heuristics. All translation phrases are ex-
tracted from bitext in a standard manner [Koehn 
et al., 2003]. Nine features are employed for de-

coding, including bidirectional translation proba-
bilities, bidirectional lexical weights, an n-gram 
language model, a word bonus, a phrase bound, 
and a maximum entropy-based reordering model. 
All feature weights are tuned on a development 
set via minimum error rate training [Och.F.J, 
2003]. 

Our bilingual corpus consists of 462300 sen-
tences (LDC2003E14, LDC2005T10, 

LDC2003E07, LDC2005T06, LDC2005E83, 
LDC2006E26). The 5-gram language model was 
trained using the Xinhua portion of the English 
Gigaword corpus and the target-side of the bilin-
gual data. We used the NIST MT04 evaluation 
set as the Dev set and MT05/06 as the Test set. 
BLEU values and decoding speed of develop-

ment and test sets are shown in Fig. 2. 

 
Fig. 2. Experimental Result of Baseline System 
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3 Parser Tree-based Pruning 

Linguistically, a sentence can be decomposed 

into phrasal segments (several words) in certain 
organized form. A popular way is to represent a 
sentence with a syntactic tree or a parser tree. In 
such a way, one can capture the underlying struc-
ture of the sentence and the recursive manner in 
which grammar rules form this structure. See Fig. 
3 for an example parser tree. Despite good liguis-

tical explanations, the decoding of most MT sys-
tems does not require the guidance of parser trees. 
It is natural to impose restrictions on CKY de-
coding so that decoding is only performed on 
spans that are consistent with tree constituents. 

NP
VP

VP

IP

VV

VV NP

PU

wo xihuan kan shu 。
① ② ③ ④ ⑤

 
Fig. 3. Example Parser Tree 

3.1 Implementation 

In this experiment, we applied the parser tree 
in the loop for locating the beg and end. First, we 
define a constraint as the set of possible spans 
that refers to the beg and end of a span in the 

parser tree. We regard spans that are in accord-
ance with the parser tree are qualified for our 
protection. We obtain the constraint information 
from the parser tree and label each phrase with a 
number tag. In addition, when generating the 
parser tree, we store the leftmost and rightmost 
children tags in their attributive father nodes (ex-

cept the leaf nodes that store the information of 
phrases). Plus, given a tree node with m children 
nodes (excluding leaf nodes), we can have n 
combination of its children nodes to ensure the 
complete combinations of the span. 

n = C  

To better understand the span definition, we 
explain it using an example, which represents a 
sentence with 12 phrases (Fig. 4). The span node 
indicates the property of the phrase span (e.g., 
VP means verb phrases). For example, the span 
node VP is a sequence from phrase 4 to phrase 8 
and it is a VP phrase span. The phrase node indi-

cates the number tag of the phrase. When gener-
ating the parser tree, take the span node VP for 
example, we store the numbers 4 and 8 in the 
node VP, indicating its leftmost and rightmost 

phrases. Furthermore, we permit the combination 
of two child nodes (except the leaf node). All the 
children nodes of a node can be combined to-
gether, the result of which is a span with the 
leftmost and rightmost phrase tags; this ensures 

that the whole sentence can be eventually pro-
duced. For example, possible combinations of 
VP’s children nodes are: DT and CP, DT and NN, 
and CP and NN, returning tag 4 and tag 7, tag 4 
and tag 8, and tag 5 and tag 8 respectively. 

NP
VP

M NR

1

NN

4

CP

9 103 125 86 7 11

IP

2

JJ

NNIN

DT

RB VB NN

NN DT S CC NN

E.g.

E.g.

Phrase 
(leaf) Node

Span Node

 

Fig. 4. Constraints in a Parser Tree 

The set of span information is a representation 
of the decoding paths of the sentence. We store 
all the permitted spans in the information set. 
Because we apply the information set as a hard 
constraint in the decoding, we consider and gen-
erate the hypotheses of spans in the set. 

3.2 Experimental Results 

In this experiment, we did not set limitations 
on the pruning lengths, that is, we permit the 

pruning on all spans regardless of their lengths. 
The experimental result is shown in Fig. 5.  

 

Fig. 5. Experimental Result of  

Parser Tree-based Pruning 

It can be seen from Fig.5 that parser tree-based 
pruning makes significant improvement on the 
decoding speed (nearly 40 times faster). Howev-

er, the translation quality suffers a great loss, 
with a decrease of 3 point in the BLUE. 
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3.3 Discussion and Improvement 

In the implementation of parser tree-based 
pruning, only the spans that are in accordance 
with the parser tree information are allowed to 
generate translation hypotheses. Though this 
mechanism can speed up the decoding process 
significantly, it definitely prunes the most sen-

tence spans, including the useful ones that can 
improve the translation quality. Furthermore, 
imprecise parser tree may impair the translation 
quality, such as neglecting useful spans, or com-
bining the phrases into the whole sentence with a 
wrong structure. 

Improper pruning is likely to eliminate poten-

tial high-quality translation hypotheses. However, 
we can make improvements through the follow-
ing methods. 

1) Weaken the Pruning Degree 

We can define a required condition for the 
pruning, i.e., we do pruning only when the span 
satisfies the required condition. If we know cer-
tain structures in the sentence cannot be translat-

ed well, but they bear a well analyzed parser re-
sult, we can use the parser information to direct 
this kind of span decoding. For example, we can 
just do pruning on phrase spans with property VP 
or NP. Another way is adding a parameter to 
control the threshold of pruning lengths. In addi-
tion, we can also increase the possibility of high-

quality spans by permitting the combinations of 
children nodes of different span nodes in the par-
ser tree.  

2) Enlarge the Coverage Degree of Parser 

Tree Information 
We can increase the number of possible de-

coding paths for a given span in parser tree-based 

pruning. Because one sentence can have different 
parser trees under different grammar analysis 
(rightmost reduction analysis, leftmost reduction 
analysis, etc.). We can employ information of 
these parser trees to make a union parser tree 
information to gain more reasonable hypotheses 
paths in the span, lightening the side effects from 
imprecise parser tree, which may increase the 

BULE value. 

4 Punctuation-based Pruning 

In general, punctuations are used to separate a 
sentence into several meaningful segments. For 
instance, commas are widely used in starting or 
ending a clause. So most of the current languages 

have applied the punctuation to make efficient 
and clear expression. In MT, we can make use of 
this “natural” segmentation to prune hypotheses 

that cross punctuations over two or more indi-
vidual segments. 

4.1 Implementation 

In machine translation, what we expect is that 
the translation result is loyal to the actual mean-

ing of source language. So, in punctuation-based 
pruning, our goal is to skip the useless spans that 
will not form a complete meaning. For an n-
phrase sentence with only one punctuation at 
point k (1 ≤ k ≤ n) and no other punctuations be-
sides beginning and end points of the sentence, 
we can say there are {(k-1)*(n-k)-2} bad spans in 
the sentence because they cross the punctuation. 

Actually, we will skip these spans because they 
will not present us a complete meaning of parts 
of the sentence. Since we use the punctuation to 
check the span integrity on partial meaning, the 
punctuation constraints can be used in the second 
stage when choosing spans. 

When implementing punctuation-based prun-

ing, we use the following restriction principles. 
As for spans with no punctuation in them, we 
will generate all hypotheses for them. This prun-
ing method we defined just works on the spans 
with punctuations. In other words, we just con-
sider spans that have punctuations in them and 
judge them according to the following criteria. 

1) If span [i-1, i+1] has punctuations in it, we 
consider this span to be valuable and will gener-
ate all possible combinations.  

2) If span [i, i+1] or span [j-1, j] is the begin-
ning or the end of the decoding sentence, we 
treat this case like case 1). 

3) If neither span [i, i+1] nor span [j-1, j] has a 
punctuation, or is the beginning or end of the 

decoding sentence, we will skip these spans. 
To understand this method, we will illustrate 

using an example (Fig. 6). The example sentence 
has 13 phrases, and it is used to demonstrate the 
constraints on the second stage of CYK. Span [5, 
10] is not qualified because it crosses a punctua-
tion at point 7, and the same is true for span [1, 

10]. Though span [3, 10] also crosses a punctua-
tion, it is qualified because it is useful to form 
the bigger span [3, 12], span [3, 13], etc., which 
have relative complete meanings. Though both 
the beginning and end points of span [0, 10] are 
not punctuations, the beginning point is the be-
ginning of the whole sentence, so it also deserves 
our protection in the constraints. 

4.2 Experimental Results 

In this experiment, we took into consideration 
the points before and after the spans. Further-
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more, we impose restrictions on the left of spans 
(the span that between the point/phrase immedi-
ately before the span and the beginning of the 
span) and right of spans (the span that between 

the point/phrase after the span and the end of the 
span) separately. The experimental result is 
shown in Fig. 7. 

小强 说  ：“ 我 的 哥哥  ，是 一 名  军人  。 ”

   0      1  2  3  4  5   6   7  8  9  10  11   12 13

Desirable
Abandoned

 
Fig. 6. Example Sentence with Punctuations 

The baseline system applied cube-pruning and 
beam search. “Left” experiment means the left 
restriction we defined is qualified, and “Right” 
experiment means the right restriction is quali-

fied. “Left && Right” means both left and right 
restrictions are qualified. “Left || Right” means at 
least one of the left and right restrictions are 
qualified. The results indicate that punctuation-
based pruning makes a boost in the decoding 
speed with no big loss in BLUE. 

4.3 Discussion and Improvement 

As can be seen from Fig. 7, the Baseline ex-
periment has a very slow decoding speed. Apart 

from some difference in decoding speed, the sec-
ond and third experiments have no big difference. 
The fourth experiment is the intersection of the 
second and the third experiment, but it becomes 
so slow because it treats so many spans as quali-
fied. The fifth experiment is the union of the sec-
ond and third experiments. It is obvious that the 

pruning method in the fifth experiment (i.e., 
Left&&Right group) has the best result, nearly 8 
times as fast as the Baseline System. 

We know that different punctuations has dif-
ferent functions in a sentence. Some punctua-
tions indicate the coordinating relation, and some 
indicate the explicative connection, etc. . How-

ever, we may omit this kinds of punctuation 
function to make punctuation-based pruning eas-
ier to apply. We can further improve the BLUE 
value if we can do better conversion of punctua-
tions into detailed and accurate constraints. 
    In fact, we can also make further improve-
ments in decoding speed in punctuation-based 
pruning. The above methods just influence span 

selection, after which we also have to generate 
the translation hypotheses. Thus, punctuation-
based pruning can also be applied on the process 
of hypotheses generation. 

Given a translation span, when generating 
translation hypotheses in CYK-based decoder, 
we prefer hypotheses that consist of two small 
spans with complete meaning. We can treat a 

span with no punctuation in it as a complete-
meaning span. So punctuations can be used to 
impose constraints to prune small spans with in-
complete meanings.  

 

 
Fig. 7. Experimental Results of  

Punctuation-based Pruning 

In Fig. 6, take span [4, 11] for example, we 
can use span [4, 8] and span [9, 11] to generate 
the translation hypothesis of span [4, 11]. How-

ever, these two spans are not the expected com-
plete-meaning spans. So we can skip this kind of 
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hypothesis generating points. The expected spilt 
of span [4, 11] is spans [4, 6] and [7, 11], or 
spans [4, 7] and [8, 11]. In the improved experi-
ment, we treat the case that the splitting point 
(excluding the beginning and end points of the 

sentence) is a punctuation as qualified, that is, we 
first check whether the splitting point is a punc-
tuation or not, then filter out the incomplete split-
ting points. We did two sets of different experi-
ments on the third stage of CYK decoding, the 
results of which is shown in Table 1.  

Table 1. Experimental Results of Improved Punctuation-

based Pruning 

Type 
Speed 

(sent/s) 

BLUE 

(max) 

Unimproved 

Punctuation Pruning 
3.56  39.21 

*Improved 

Punctuation Pruning 
3.75  39.17 

**Improved 4.16  39.18 

The first experiment is the unimproved punc-
tuation-based pruning. The second experiment 

examines the beginning and end points of small 
spans, checks they are punctuation or not; the 
third experiment just takes into account the end 
of the first small span and the beginning of the 
second span. As can be seen, the third experi-
ment gained a better decoding speed, a 17% 
boost and nearly no loss in BLUE. 

5 Phrase Boundary-based Pruning 

In hierarchical MT systems, especially those 
bear the CYK algorithm, a sentence is translated 
over source-language span units (or sub-strings) 
from single words to the whole sentence. So one 
might expect to focus more on the decoding of 

promising source spans but avoid the computa-
tion on the rest that is unlikely to contribute to 
the final translation. To do this, we introduce 
labels to indicate whether a word is the begin-
ning/end of a source-language phrase. Here, a 
phrase is not linguistically motivated; instead, it 
is a string of words that are projected by MT pre-
ferred derivations. These labels can be then used 

as soft or hard constraints to guide the MT to 
decode spans with good phrase boundaries and 
"skip" spans with no clear boundaries. 

Normally, given a to-be-translated sentence of 
n phrases p1p2

……pn, we define that a phrase pi 
(1<i<n) is in the class “Beg” if there exists a 
constituent phrase span pi

……pj for some (i<j). In 

the same way, we will regard a phrase pj (i<j<n) 

is in the class “End” if there exists a constituent 
phrase span pi

……pj for some (j>i). There are two 
different and separate classification tasks. 

Note that the first phrase p1 and the last phrase 
pn are unambiguous since they begin/end a span. 

The first/last phrase p1/pn must begin/end a span 
covering the whole sentence. 

Span boundary can be recognized and judged 
by some external trained models. We can use the 
span boundary information (labelled with four 
different tags) to skip some decoding spans. 

5.1 Implementation 

We trained a model, which labels the test set 

with tags automatically. We got the model-
training data from word alignment and used the 
CRF tools to train this model. 

5.1.1 Data Preparation 

Grammar parser tree is close to the mind of 
human, but it may not be the way that the trans-
lation systems think. So, to get the beginning and 

end tags that are close to the thinking of transla-
tion systems, we first use word alignment to get 
the phrase spans that can generate a context-free 
grammar tree, which will be used as model-
training data. 
     [Zhang, et al., 2008] proposed a method to 
learn the translation boundaries from Synchro-
nous Grammar Tree, using the word-level align-

ments alone without reference to external syntac-
tic analysis. Since word-level alignment is many-
to-many from two language permutation, we can 
easily use the method in [Chiang, 2005] to get 
the decomposition tree from word-level align-
ment without any grammar assistance. 

We extract the tags from the decomposition 

tree obtained from word-level alignment. In con-
text-free grammar tree, we regard the phrase 
span in the same sub-tree as a translation span. In 
the translation span, we label the beginning 
phrase of the phrase sequence with tag B (Begin-
ning Tag), and the end phrase tag E (End Tag). 
There is an example in Fig. 8 shows these tags.  

EB E

  ①      ②      ③

 jintian       de       zhanlan
 

Fig. 8. Example Definition of Beginning and End Tags 
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However, some phrases may be the beginning 
and end tags at the same time, which we label 
with tag D (Double tag). And S (Single Tag) is 
for those phrases that are neither the beginning 
tag nor the end tag.  

5.1.2 Training 

The data we got from word-level alignment is 
dull, with just the tags and phrases, which will 
decrease the accuracy of the trained model. To 
increase the accuracy of the trained model, we 
use information gained from the grammar tree, 
such as Part of Speech (PoS) information, the 
phrase span it can begin or end with.  

NP

DNP NP

NNNP

NT

DEG

  ①        ②          ③ 

 jintian      de              zhanlan
 

Fig. 9. PoS Attributes 

PoS information is illustrated in Fig. 9. Capital 
letters like ‘NP’, ‘NN’, ‘DNP’, etc. are labels of 
different grammar parts of a sentence in the par-
ser tree. For example, the phrase ‘jintian’ is an 
NT phrase, and it can be the beginning of a 

phrase span in DNP subtree or a phrase span in 
NP subtree. 

5.1.3 Pruning Criterion 

After trained the model, we label each phrase 
in the sentence with a tag, which is ‘B’ or ‘E’ or 
‘D’ or ‘S’. As shown in Fig. 11, suppose the 
translation span [beg, end] has a splitting point 
mid, when generating the translation hypothesis, 
we will check the end point (mid) of span [beg, 

mid] and the beginning point (mid+1) of span 
[mid + 1, end], if the tags are not we expected 
(for example, the end of span [beg, mid] is a ‘B’ 
tag, while the beginning of span [mid +1, end] is 
an ‘E’ tag), we will skip it. However, we have to 
impose constraints on the lengths of the pruning 
phrases to ensure that the short spans can survive 

the pruning.  

beg mid... mid+1 end...

EB

Translating Span

 

Fig. 11. Criterion Point 

5.2 Experimental Results 

In this experiment, we set a threshold on the 
phrase length that can be pruned, and impose this 
constraint on the second part of CYK (Fig.1). 
Here, we just prune in the case that the ending of 
span [beg, mid] has a ‘B’ tag and the beginning 
of span [mid +1, end] has an ‘E’ tag. 

    The baseline system in this experiment used 
the punctuation-based pruning method (case 
“Left&&Right”) in the first part of CYK (Fig. 1 
and Fig. 7). Fig. 10 shows the result of the Dev 
set. 

 
Fig. 10. Experimental Result of  

Phrase tag-based Pruning 

5.3 Discussion and Improvement 

In contrast with the first two methods, the re-
sult is far from satisfactory. In particular, the im-
provement for pruning length range 6~7 is 

13.8%~15.4%, but a decrease of 0.67~0.97 in 
BLUE point incurred. There are two factors that 
may affect this method, and we can improve this 
method using the following proposals. 

1) Insufficient or Improper Use of Phrase 

Tags 
The tags in this experiment are not precise 

enough to distinguish all the unqualified transla-
tion spans from qualified ones. We can add more 
detailed judgments on phrase tags by classifying 
the phrase into more categories. For example, if a 
phrase is neither a ‘B’ point nor an ‘E’ point, we 
can regard it as a single phrase, which can help 
do more pruning in other circumstances. 

2) Inaccuracy of the Model  

In fact, the model we trained is not as good as 
we expected. The accuracy of the model is 80% 
at the maximum. So the tags it labelled on the 
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test set are not in accordance with the original 
training set, that is, we did not get the satisfied 
tags on the test set. This inaccuracy may account 
for the disappointing experimental result. 

6 Other Possible Pruning Methods 

In CYK-based decoders, the hypotheses of 
spans are generated from smaller spans at each 
splitting point. Thus, every splitting point needs 
a time-consuming process to traverse and com-
bine hypotheses from smaller spans. Given a 
span [beg, end] with a splitting point mid, we can 

make use of the information of the splitting point 
mid or the relation between two smaller spans 
(span [beg, mid] and span [mid + 1, end]) on both 
sides of the splitting point, such as beam re-
strictions on splitting points, mutual information. 

6.1 Mutual Information 

Mutual information is the relation mutuality 
between two objects. Since there is some relation 

between different phrases in a sentence, we can 
use mutual information to indicate the tightness 
between different phrase spans. Using the infor-
mation entropy as the pruning criterion, we can 
give the generating priority to adjacent spans 
with high information entropy. 

6.2 N-best List Filtering in CYK 

In CYK-based decoding, since every splitting 

point K can generate a set of different translation 
hypotheses, instead of generating the translation 
hypotheses from every possible splitting point 
and giving a detailed and complex scoring of the 
hypotheses, we can give an instant estimated 
score for every possible point based on some 
properties that determine the final score. We can 

just use the n best estimated points to generate 
the hypotheses, which can prune a lot of hypoth-
eses with low scores in advance. 

7 Related Work 

We conduct the experiments in a Chinese-to-
English phrase-based model, with beam search 

and cube pruning applied. Initial methods like 
beam search and cube pruning are widely used in 
the optimization of decoding [Koehn, 2003; 
Robert, 2007]. Improved methods based on beam 
search and cube pruning have been widely stud-
ied for phrased-based [Koehn, 2004; Tillmann 
and Ney, 2003; Tillmann, 2006] and syntax-
based translation models [Chiang, 2007; Huang 

and Chiang, 2007; Watanabe et al., 2006; Huang 
and Mi, 2010]. 

Our work has several differences from previ-
ous efforts. 

In parser tree-based pruning, [Hirofumi, 2008] 
used the source tree constraints to restrict the 
word reordering in Inversion Transduction 

Grammar (ITG)-supported decoders. However, 
we use the parser tree information to restrict the 
translating path and the reordering between irrel-
evant phrases, and implement it in a simple way. 

In punctuation-based pruning, [Valentin, 2011] 
used the punctuation to restrict the reordering in 
dependency parsing. However, we treat punctua-

tions as symbols for judging the intactness of 
span meanings, and use them to prune the decod-
ing search space. 
    In phrase boundary-based pruning, [Xiong, 
2010] used the boundary segment tags as the soft 
constraints for recognizing the translation zone, 
and [Wenduan, 2013] used the phrase tags to do 

context-sensitive pruning in string-to-tree models. 
We use this kind of labels as hard constraints in 
CYK-based decoders and verify their effects on 
different span lengths. 

8 Conclusion 

CYK is a popular algorithm for implementing 

decoders for SMT systems, but it has a cubic 
time complexity. We compared three popular 
pruning methods for CYK-based decoding that 
try to relieve this complexity  

The grammar parser tree-based pruning gained 
outstanding decoding speed, but it somewhat 
decreased the translation quality. The decoding 
paths that the parser tree represents are possibly 

not the optimal ones in the view of machine 
translation systems. Future work can focus on 
increasing the coverage of the key decoding 
paths that gained from the parser trees.  

Punctuation-based pruning achieved an overall 
satisfying result in both decoding speed and 
translation quality. However, phrase boundary-

based pruning did not get any satisfied result in 
either decoding speed or translation quality. To 
improve this method, future work can focus on 
increasing the accuracy of the model and on 
making better use of the phrase tags. 

We also proposed some other novel pruning 
methods for CYK-based decoding. Future work 

would be to implement these methods on top of 
the same toolkit as we used and compare their 
results with those of current pruning methods. 
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